Suppr超能文献

心脏再生的氧化还原调节:一种进化权衡。

Redox Regulation of Heart Regeneration: An Evolutionary Tradeoff.

作者信息

Elhelaly Waleed M, Lam Nicholas T, Hamza Mohamed, Xia Shuda, Sadek Hesham A

机构信息

Department of Internal Medicine, Division of Cardiology, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center Dallas, TX, USA.

出版信息

Front Cell Dev Biol. 2016 Dec 15;4:137. doi: 10.3389/fcell.2016.00137. eCollection 2016.

Abstract

Heart failure is a costly and deadly disease, affecting over 23 million patients worldwide, half of which die within 5 years of diagnosis. The pathophysiological basis of heart failure is the inability of the adult heart to regenerate lost or damaged myocardium. Although limited myocyte turnover does occur in the adult heart, it is insufficient for restoration of contractile function (Nadal-Ginard, 2001; Laflamme et al., 2002; Quaini et al., 2002; Hsieh et al., 2007; Bergmann et al., 2009, 2012). In contrast to lower vertebrates (Poss et al., 2002; Poss, 2007; Jopling et al., 2010; Kikuchi et al., 2010; Chablais et al., 2011; González-Rosa et al., 2011; Heallen et al., 2011), adult mammalian heart cardiomyogenesis following injury is very limited (Nadal-Ginard, 2001; Laflamme et al., 2002; Quaini et al., 2002; Bergmann et al., 2009, 2012) and is insufficient to restore normal cardiac function. Studies in the late 90s elegantly mapped the DNA synthesis and cell cycle dynamics of the mammalian heart during development and following birth (Soonpaa et al., 1996; Soonpaa and Field, 1997, 1998), where they showed that DNA synthesis drops significantly around birth with low-level DNA synthesis few days after birth. Around P5 to P7, cardiomyocytes undergo a final round of DNA synthesis without cytokinesis, and the majority become binucleated and exit the cell cycle permanently. Therefore, due to the similarities between the immature mammalian heart and lower vertebrates (Poss, 2007; Walsh et al., 2010), it became important to determine whether they have similar regenerative abilities. Recently, we demonstrated that removal of up to 15% of the apex of the left ventricle of postnatal day 1 (P1) mice results in complete regeneration within 3 weeks without any measurable fibrosis and cardiac dysfunction (Porrello et al., 2011). This response is characterized by robust cardiomyocyte proliferation with gradual restoration of normal cardiac morphology. In addition to the histological evidence of proliferating myocytes, genetic fate-mapping studies confirmed that the majority of newly formed cardiomyocytes are derived from proliferation of preexisting cardiomyocytes (Porrello et al., 2011). More recently, we established an ischemic injury model where the left anterior descending coronary artery was ligated in P1 neonates (Porrello et al., 2013). The injury response was similar to the resection model, with robust cardiomyocyte proliferation throughout the myocardium, as well as restoration of normal morphology by 21 days. However, this regenerative capacity is lost by P7, after which injury results in the typical cardiomyocyte hypertrophy and scar-formation characteristic of the adult mammalian heart. Not surprisingly, the loss of this regenerative capacity coincides with binucleation and cell cycle exit of cardiomyocytes (Soonpaa et al., 1996; Walsh et al., 2010). An important approach toward a deeper understanding the loss of cardiac regenerative capacity in mammals is to first consider , and not only , this happens. Regeneration of the early postnatal heart following resection or ischemic infarction involves replacement of lost myocardium and vasculature with restoration of normal myocardial thickness and architecture, with long-term normalization of systolic function. Why would the heart permanently forego such a remarkable regenerative program shortly after birth? The answer may lie in within the fundamental principal of evolutionary tradeoff.

摘要

心力衰竭是一种代价高昂且致命的疾病,全球有超过2300万患者受其影响,其中一半在确诊后5年内死亡。心力衰竭的病理生理基础是成年心脏无法再生丢失或受损的心肌。尽管成年心脏中确实存在有限的心肌细胞更新,但这不足以恢复收缩功能(纳达尔 - 吉纳德,2001年;拉弗勒姆等人,2002年;夸尼等人,2002年;谢等人,2007年;伯格曼等人,2009年、2012年)。与低等脊椎动物不同(波斯等人,2002年;波斯,2007年;乔普林等人,2010年;菊池等人,2010年;沙布莱等人,2011年;冈萨雷斯 - 罗萨等人,2011年;希伦等人,2011年),成年哺乳动物心脏在受伤后的心肌生成非常有限(纳达尔 - 吉纳德,2001年;拉弗勒姆等人,2002年;夸尼等人,2002年;伯格曼等人,2009年、2012年),不足以恢复正常心脏功能。90年代后期的研究精确绘制了哺乳动物心脏在发育过程中和出生后的DNA合成及细胞周期动态(松帕等人,1996年;松帕和菲尔德,1997年、1998年),研究表明出生前后DNA合成显著下降,出生后几天DNA合成处于低水平。在出生后第5至7天左右,心肌细胞进行最后一轮DNA合成但不进行胞质分裂,大多数细胞变成双核并永久退出细胞周期。因此,由于未成熟哺乳动物心脏与低等脊椎动物存在相似性(波斯,2007年;沃尔什等人,2010年),确定它们是否具有相似的再生能力变得很重要。最近,我们证明切除出生后第1天(P1)小鼠左心室尖部高达15%的组织,可在3周内完全再生,且无任何可测量的纤维化和心脏功能障碍(波雷洛等人,2011年)。这种反应的特征是心肌细胞强劲增殖,心脏形态逐渐恢复正常。除了增殖心肌细胞的组织学证据外,基因命运图谱研究证实大多数新形成的心肌细胞源自已有心肌细胞的增殖(波雷洛等人,2011年)。最近,我们建立了一种缺血性损伤模型,在P1新生小鼠中结扎左前降支冠状动脉(波雷洛等人,2013年)。损伤反应与切除模型相似,整个心肌层有强劲的心‍肌细胞增殖,到21天时形态恢复正常。然而,这种再生能力在出生后第7天就丧失了,此后损伤会导致成年哺乳动物心脏典型的心肌细胞肥大和瘢痕形成。不出所料,这种再生能力的丧失与心肌细胞的双核化和细胞周期退出同时发生(松帕等人,1996年;沃尔什等人,2010年)。深入理解哺乳动物心脏再生能力丧失的一个重要方法是首先考虑这种情况为何会发生,而不仅仅是这种情况何时发生。出生后早期心脏切除或缺血性梗死后的再生涉及用正常心肌厚度和结构替代丢失的心肌和血管,并使收缩功能长期恢复正常。为什么心脏在出生后不久就会永久放弃这种显著的再生程序呢?答案可能在于进化权衡的基本原理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65a8/5157008/b81f424ec701/fcell-04-00137-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验