Cifuentes S C, Lieblich M, López F A, Benavente R, González-Carrasco J L
Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda. Gregorio del Amo 8, 28040 Madrid, Spain; Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IAAB, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911, Leganés, Madrid, Spain.
Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda. Gregorio del Amo 8, 28040 Madrid, Spain.
Mater Sci Eng C Mater Biol Appl. 2017 Mar 1;72:18-25. doi: 10.1016/j.msec.2016.11.037. Epub 2016 Nov 12.
In the field of bioabsorbable composites for biomedical applications, extrusion has been employed as a method to prepare homogeneous blends of polymeric matrices with bioactive ceramic fillers. In this work, the suitability of processing poly-l-lactic acid/Magnesium (PLLA/Mg) composites by hot extrusion has been assessed by a systematic characterization of PLLA/Mg composites containing different amounts of Mg particles up to 7wt%. The results show that extrusion causes a reduction of almost 20% in the viscosity average molecular weight of PLLA, which further decreases with increasing Mg content. Extrusion gave always rise to a homogeneous distribution of Mg particles within the PLLA matrix. This composite processing was not compromised by the degradation of the polymeric matrix because the processing temperature was always below the onset degradation temperature. In the processing conditions employed in the present work, degradation of the composite slightly increases as more Mg is added up to 5wt%, but is very high at 7wt%. This was also evident from the mechanical behaviour, so that Mg particles improved the stiffness and compression strength of neat PLLA until 5wt% of Mg content, which dropped drastically when the material had 7wt% of Mg. The filler strengthening factor decreases with the increment in Mg content. In order to obtain an optimised contribution of Mg particles, a balance between thermal degradation and mechanical resistance of PLLA must be achieved.
在用于生物医学应用的可生物吸收复合材料领域,挤出法已被用作制备聚合物基体与生物活性陶瓷填料均匀共混物的一种方法。在这项工作中,通过对含有高达7wt%不同Mg颗粒量的聚左旋乳酸/镁(PLLA/Mg)复合材料进行系统表征,评估了通过热挤出加工PLLA/Mg复合材料的适用性。结果表明,挤出导致PLLA的粘均分子量降低了近20%,且随着Mg含量的增加进一步降低。挤出始终使Mg颗粒在PLLA基体内均匀分布。这种复合材料加工并未因聚合物基体的降解而受到影响,因为加工温度始终低于起始降解温度。在本工作采用的加工条件下,随着Mg添加量增加至5wt%,复合材料的降解略有增加,但在7wt%时降解非常严重。这从力学性能上也很明显,即Mg颗粒在Mg含量达到5wt%之前提高了纯PLLA的刚度和抗压强度,但当材料中Mg含量为7wt%时,其刚度和抗压强度急剧下降。填料增强因子随Mg含量的增加而降低。为了获得Mg颗粒的最佳贡献,必须在PLLA的热降解和机械抗性之间取得平衡。