Tonsomboon Khaow, Butcher Annabel L, Oyen Michelle L
Department of Engineering, The Nanoscience Centre, 11 JJ Thomson Avenue, Cambridge CB3 0FF, United Kingdom; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand.
Department of Engineering, The Nanoscience Centre, 11 JJ Thomson Avenue, Cambridge CB3 0FF, United Kingdom.
Mater Sci Eng C Mater Biol Appl. 2017 Mar 1;72:220-227. doi: 10.1016/j.msec.2016.11.025. Epub 2016 Nov 14.
Mechanically robust hydrogels are required for many tissue engineering applications to serve as cell-supporting structures. Unlike natural tissues, the majority of existing tough hydrogels lack ordered microstructures organized to withstand specific loading conditions. In this work, electrospun gelatin nanofibres, mimicking the collagen network in native tissues, are used to strengthen and resist crack propagation in brittle alginate hydrogels. Aligned nanofibre reinforcement enhances the tensile strength of the hydrogels by up to two orders of magnitude. The nanofibres can be arranged as multilayer laminates with varying orientations, which increases the toughness by two orders of magnitude compared with the unreinforced hydrogel. This work demonstrates a two-part strategy of fibre reinforcement and composite lamination in manufacturing strong and tough hydrogels with flexible microstructures to suit different mechanical and biomedical requirements.
许多组织工程应用都需要机械性能强大的水凝胶作为细胞支撑结构。与天然组织不同,大多数现有的坚韧水凝胶缺乏为承受特定负载条件而组织起来的有序微观结构。在这项工作中,模仿天然组织中胶原蛋白网络的电纺明胶纳米纤维被用于增强脆性藻酸盐水凝胶并抵抗其裂纹扩展。排列整齐的纳米纤维增强材料可将水凝胶的拉伸强度提高多达两个数量级。纳米纤维可以排列成具有不同取向的多层层压板,与未增强的水凝胶相比,其韧性提高了两个数量级。这项工作展示了一种两部分策略,即纤维增强和复合层压,用于制造具有灵活微观结构的坚固且坚韧的水凝胶,以满足不同的机械和生物医学要求。