Goss Reimund, Greifenhagen Anne, Bergner Juliane, Volke Daniela, Hoffmann Ralf, Wilhelm Christian, Schaller-Laudel Susann
Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.
Institute for Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.
Planta. 2017 Apr;245(4):793-806. doi: 10.1007/s00425-016-2645-9. Epub 2016 Dec 26.
A special domain of the thylakoid membrane of higher plants has been isolated which carries out the de-epoxidation of the xanthophyll cycle pigment violaxanthin to zeaxanthin. Recent models indicate that in the chloroplast of higher plants, the violaxanthin (V) cycle takes place within specialized domains in the thylakoid membrane. Here, we describe a new procedure to directly isolate such a domain in functional state. The procedure consists of a thylakoid membrane isolation at a pH value of 5.2 which realizes the binding of the enzyme V de-epoxidase (VDE) to the membrane throughout the preparation process. Isolated thylakoid membranes are then solubilized with the very mild detergent n-dodecyl α-D-maltoside and the pigment-protein complexes are separated by sucrose gradient ultracentrifugation. The upper main fraction of the sucrose gradient represents a V cycle domain which consists of the major light-harvesting complex of photosystem II (LHCII), a special lipid composition with an enrichment of the galactolipid monogalactosyldiacylglycerol (MGDG) and the VDE. The domain is isolated in functional state as evidenced by the ability to convert the LHCII-associated V to zeaxanthin. The direct isolation of a V cycle domain proves the most important hypotheses concerning the de-epoxidation reaction in intact thylakoid membranes. It shows that the VDE binds to the thylakoid membrane at low pH values of the thylakoid lumen, that it binds to membrane regions enriched in LHCII, and that the domain contains high amounts of MGDG. The last point is in line with the importance of the galactolipid for V solubilisation and, by providing inverted hexagonal lipid structures, for VDE activity.
高等植物类囊体膜的一个特殊区域已被分离出来,该区域能将叶黄素循环色素紫黄质脱环氧化为玉米黄质。最近的模型表明,在高等植物的叶绿体中,紫黄质(V)循环发生在类囊体膜的特定区域内。在此,我们描述了一种直接分离处于功能状态的此类区域的新方法。该方法包括在pH值为5.2的条件下分离类囊体膜,这能在整个制备过程中实现V脱环氧化酶(VDE)与膜的结合。然后用非常温和的去污剂正十二烷基α-D-麦芽糖苷使分离出的类囊体膜溶解,并通过蔗糖梯度超速离心分离色素-蛋白质复合物。蔗糖梯度的上部主要部分代表一个V循环区域,它由光系统II的主要捕光复合物(LHCII)、富含半乳糖脂单半乳糖基二酰甘油(MGDG)的特殊脂质组成以及VDE构成。该区域以功能状态被分离出来,这可通过将与LHCII相关的V转化为玉米黄质的能力得到证明。直接分离V循环区域证实了关于完整类囊体膜中脱环氧化反应的最重要假设。它表明VDE在类囊体腔的低pH值下与类囊体膜结合,它与富含LHCII的膜区域结合,并且该区域含有大量的MGDG。最后一点与半乳糖脂对V的溶解以及通过提供反相六角形脂质结构对VDE活性的重要性相符。