Suppr超能文献

动态改变蛋白质-膜的结合以调节光合作用电子传递。

Dynamic Changes in Protein-Membrane Association for Regulating Photosynthetic Electron Transport.

机构信息

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France.

Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

出版信息

Cells. 2021 May 16;10(5):1216. doi: 10.3390/cells10051216.

Abstract

Photosynthesis has to work efficiently in contrasting environments such as in shade and full sun. Rapid changes in light intensity and over-reduction of the photosynthetic electron transport chain cause production of reactive oxygen species, which can potentially damage the photosynthetic apparatus. Thus, to avoid such damage, photosynthetic electron transport is regulated on many levels, including light absorption in antenna, electron transfer reactions in the reaction centers, and consumption of ATP and NADPH in different metabolic pathways. Many regulatory mechanisms involve the movement of protein-pigment complexes within the thylakoid membrane. Furthermore, a certain number of chloroplast proteins exist in different oligomerization states, which temporally associate to the thylakoid membrane and modulate their activity. This review starts by giving a short overview of the lipid composition of the chloroplast membranes, followed by describing supercomplex formation in cyclic electron flow. Protein movements involved in the various mechanisms of non-photochemical quenching, including thermal dissipation, state transitions and the photosystem II damage-repair cycle are detailed. We highlight the importance of changes in the oligomerization state of VIPP and of the plastid terminal oxidase PTOX and discuss the factors that may be responsible for these changes. Photosynthesis-related protein movements and organization states of certain proteins all play a role in acclimation of the photosynthetic organism to the environment.

摘要

光合作用必须在不同的环境中高效地进行,如在阴影和阳光充足的环境中。光强的快速变化和光合作用电子传递链的过度还原会导致活性氧物质的产生,这可能会对光合作用装置造成损害。因此,为了避免这种损害,光合作用电子传递在许多层面上受到调节,包括天线中的光吸收、反应中心的电子转移反应,以及不同代谢途径中 ATP 和 NADPH 的消耗。许多调节机制涉及到类囊体膜内蛋白-色素复合物的移动。此外,一定数量的叶绿体蛋白存在于不同的寡聚化状态,这些状态暂时与类囊体膜结合并调节它们的活性。这篇综述首先简要概述了叶绿体膜的脂质组成,然后描述了循环电子流中超复合物的形成。详细描述了涉及各种非光化学猝灭机制的蛋白运动,包括热耗散、状态转变和光系统 II 损伤修复循环。我们强调了 VIPP 和质体末端氧化酶 PTOX 寡聚化状态变化的重要性,并讨论了可能导致这些变化的因素。与光合作用相关的蛋白运动和某些蛋白的组织状态都在光合作用生物对环境的适应中起着重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2cc/8155901/02a0e4db8024/cells-10-01216-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验