Perras Frédéric A, Luo Hao, Zhang Ximing, Mosier Nathan S, Pruski Marek, Abu-Omar Mahdi M
Ames Laboratory, U.S. Department of Energy , Ames, Iowa 50011, United States.
Department of Chemistry, School of Chemical Engineering, and the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), Purdue University , West Lafayette, Indiana 47907, United States.
J Phys Chem A. 2017 Jan 26;121(3):623-630. doi: 10.1021/acs.jpca.6b11121. Epub 2017 Jan 17.
Lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear C-C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determine structure-function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.
木质纤维素生物质是一种很有前景的可持续原料,可用于生产生物燃料、生物材料和生物特种化学品。然而,由于我们对其分子结构了解不足,生物质的高效利用受到了限制。在此,我们报告了一项关于生物质分子结构的动态核极化(DNP)增强固态(SS)NMR研究,涵盖催化处理前后。该技术能够在自然丰度下测量二维同核C-C相关SSNMR光谱,首次给出了未处理和催化处理后生物质样品结构的原子水平图像。我们预计,进一步开展此类实验可用于确定结构-功能关系,并推动更高效、具有化学针对性的生物质转化技术的发展。