Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States.
Center for Nanoscale Materials, Argonne National Laboratory , Argonne, Illinois 60439, United States.
Nano Lett. 2017 Feb 8;17(2):1102-1108. doi: 10.1021/acs.nanolett.6b04652. Epub 2017 Jan 4.
Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behavior is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use X-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic "hard" or inhomogeneous and "soft" or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystal structure obtained from the ultrafast X-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.
对材料在超快激发后的动态响应进行成像,可以揭示能量传递机制及其耗散途径,以及在远离平衡条件下材料的稳定性。这种动态行为很难进行表征,特别是在纳米级的时空尺度上进行实时观测。在这封信件中,我们使用 X 射线相干衍射成像技术表明,超快激光激发氧化锌纳米晶会引发一系列丰富的变形动力学,包括在不同时间尺度上具有特征的“硬”或不均匀模式和“软”或均匀模式,分别对应于声子的传播和晶体的共振振荡。通过将超快 X 射线测量得到的三维纳米晶结构与连续的热-电-机械有限元模型相结合,我们阐明了激光激发后的变形机制,特别是扭转模式会产生比弯曲模式大 50%的电势梯度。理解这些机制在超快时间尺度上的时变特性,对于开发用于纳米级发电的新型材料具有重要意义。