Suppr超能文献

无定形氧化锰@多壁碳纳米管纤维的设计用于坚固的固态超级电容器。

Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor.

机构信息

Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, China.

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China , Hefei 230026, China.

出版信息

ACS Nano. 2017 Jan 24;11(1):444-452. doi: 10.1021/acsnano.6b06357. Epub 2016 Dec 29.

Abstract

Solid-state fiber-based supercapacitors have been considered promising energy storage devices for wearable electronics due to their lightweight and amenability to be woven into textiles. Efforts have been made to fabricate a high performance fiber electrode by depositing pseudocapacitive materials on the outer surface of carbonaceous fiber, for example, crystalline manganese oxide/multiwalled carbon nanotubes (MnO/MWCNTs). However, a key challenge remaining is to achieve high specific capacitance and energy density without compromising the high rate capability and cycling stability. In addition, amorphous MnO is actually preferred due to its disordered structure and has been proven to exhibit superior electrochemical performance over the crystalline one. Herein, by incorporating amorphous MnO onto a well-aligned MWCNT sheet followed by twisting, we design an amorphous MnO@MWCNT fiber, in which amorphous MnO nanoparticles are distributed in MWCNT fiber uniformly. The proposed structure gives the amorphous MnO@MWCNT fiber good mechanical reliability, high electrical conductivity, and fast ion-diffusion. Solid-state supercapacitor based on amorphous MnO@MWCNT fibers exhibits improved energy density, superior rate capability, exceptional cycling stability, and excellent flexibility. This study provides a strategy to design a high performance fiber electrode with microstructure control for wearable energy storage devices.

摘要

固态纤维基超级电容器因其重量轻且易于编织成纺织品而被认为是用于可穿戴电子设备的有前途的储能设备。已经做出了许多努力,通过在碳质纤维的外表面上沉积赝电容材料(例如结晶氧化锰/多壁碳纳米管(MnO/MWCNTs))来制造高性能纤维电极。然而,仍然存在一个关键挑战,即在不影响高速率能力和循环稳定性的情况下实现高比电容和能量密度。此外,由于无序结构,非晶态 MnO 实际上更受欢迎,并且已经证明其电化学性能优于晶态 MnO。在此,通过将非晶态 MnO 掺入到排列良好的 MWCNT 片上,然后进行扭转,我们设计了一种非晶态 MnO@MWCNT 纤维,其中非晶态 MnO 纳米颗粒均匀分布在 MWCNT 纤维中。所提出的结构赋予了非晶态 MnO@MWCNT 纤维良好的机械可靠性、高导电性和快速离子扩散性。基于非晶态 MnO@MWCNT 纤维的固态超级电容器表现出改善的能量密度、优异的倍率性能、出色的循环稳定性和优异的柔韧性。这项研究为用于可穿戴储能设备的具有微观结构控制的高性能纤维电极设计提供了一种策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验