Custer Thomas C, Walter Nils G
Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, 48109.
Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109.
Protein Sci. 2017 Jul;26(7):1363-1379. doi: 10.1002/pro.3108. Epub 2017 Feb 12.
RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly poorly understood. Intracellular single-molecule fluorescence microscopy provides a powerful emerging tool for probing the pertinent mechanistic parameters that govern cellular RNA functions, including those of protein coding messenger RNAs (mRNAs). Progress has been hampered, however, by the scarcity of efficient high-yield methods to fluorescently label RNA molecules without the need to drastically increase their molecular weight through artificial appendages that may result in altered behavior. Herein, we employ T7 RNA polymerase to body label an RNA with a cyanine dye, as well as yeast poly(A) polymerase to strategically place multiple 2'-azido-modifications for subsequent fluorophore labeling either between the body and tail or randomly throughout the tail. Using a combination of biochemical and single-molecule fluorescence microscopy approaches, we demonstrate that both yeast poly(A) polymerase labeling strategies result in fully functional mRNA, whereas protein coding is severely diminished in the case of body labeling.
RNA作为许多大型细胞复合物(即“分子机器”)的底物或功能成分,发挥着基本且普遍存在的作用,这些复合物用于维持和控制遗传信息的读出,而这一功能领域我们才刚刚开始了解。对于基因表达过程中涉及的大量RNA进行时空组织的细胞机制,我们尤其知之甚少。细胞内单分子荧光显微镜为探究控制细胞RNA功能的相关机制参数提供了一种强大的新兴工具,包括蛋白质编码信使RNA(mRNA)的功能参数。然而,高效高产的方法稀缺,这些方法无需通过可能导致行为改变的人工附属物大幅增加RNA分子的分子量就能对其进行荧光标记,这阻碍了研究进展。在此,我们利用T7 RNA聚合酶用花青染料对RNA进行主体标记,以及利用酵母聚腺苷酸聚合酶有策略地引入多个2'-叠氮基修饰,以便随后在主体和尾部之间或随机在整个尾部进行荧光团标记。通过结合生化和单分子荧光显微镜方法,我们证明酵母聚腺苷酸聚合酶的两种标记策略都能产生功能完全正常的mRNA,而主体标记的情况下蛋白质编码则会严重减少。