Suppr超能文献

纳米拓扑结构和剪切应力对成骨细胞生长和行为的时间控制

Temporal Control of Osteoblast Cell Growth and Behavior Dictated by Nanotopography and Shear Stress.

作者信息

Dhawan Udesh, Pan Hsu-An, Chu Ying Hao, Huang Guewha S, Chen Po Chun, Chen Wen-Liang

出版信息

IEEE Trans Nanobioscience. 2016 Oct;15(7):704-712. doi: 10.1109/TNB.2016.2605686.

Abstract

Biomaterial design involves assessment of cellular response to nanotopography parameters such as shape, dimension of nanotopography features. Here, the effect of nanotopography alongside the in vivo factor, shear stress, on osteoblast cell behavior, is reported. Tantalum oxide nanodots of 50 or 100 nm diameter were engineered using anodized aluminum oxide as a template. Bare tantalum nitride coated silicon substrates were taken as control (flat). MG63 (osteoblast) cells were seeded for 72 hours on flat, 50 or 100 nm nanodots and modulation in cell morphology, cell viability and expression of integrins was studied. Cells displayed a well-extended morphology on 50 nm nanodots in contrast to an elongated morphology on 100 nm nanodots, as observed by scanning electron microscopy and immunofluorescence staining, thereby confirming the cellular response to different nanotopographies. Based on quantitative real-time polymerase chain reaction data, a greater fold change in the expression of α1 , α2 , α3 , α8 , α9 , [Formula: see text], β1 , β4 , β5 , β7 and β8 integrins was observed in cells cultured on 100 nm than on 50 nm nanodots. Moreover, in the presence of a shear stress of 2 dyne/cm, a 52% increase in the cell viability after culturing the cells for 72 hours was observed on 100 nm nanodots as compared to 50 nm nanodots, thereby validating the effect of shear stress on cell behavior. Duration-of-culture experiments revealed 100 nm nanodots to be an ideal nanotopography choice to engineer optimized implant geometries for an ideal cell response. This study highlights the in vivo factors which need to be considered while designing nanotopographies for in vivo applications, for an ideal response as the cell-nanomaterial interface. Applications in the field of Biomedical, tissue engineering and cancer research are expected.

摘要

生物材料设计涉及评估细胞对纳米拓扑参数(如形状、纳米拓扑特征尺寸)的反应。在此,报告了纳米拓扑与体内因素剪切应力对成骨细胞行为的影响。使用阳极氧化铝作为模板制备了直径为50或100nm的氧化钽纳米点。以裸露的氮化钽涂层硅基板作为对照(平面)。将MG63(成骨细胞)细胞接种在平面、50或100nm纳米点上72小时,并研究细胞形态、细胞活力和整合素表达的调节。通过扫描电子显微镜和免疫荧光染色观察到,与100nm纳米点上的细长形态相比,细胞在50nm纳米点上呈现出良好伸展的形态,从而证实了细胞对不同纳米拓扑的反应。基于定量实时聚合酶链反应数据,在100nm纳米点上培养的细胞中,α1、α2、α3、α8、α9、[公式:见原文]、β1、β4、β5、β7和β8整合素的表达变化倍数比在50nm纳米点上培养的细胞更大。此外,在2达因/平方厘米的剪切应力存在下,与50nm纳米点相比,在100nm纳米点上培养细胞72小时后,细胞活力增加了52%,从而验证了剪切应力对细胞行为的影响。培养时间实验表明,100nm纳米点是设计优化植入物几何形状以实现理想细胞反应的理想纳米拓扑选择。这项研究强调了在为体内应用设计纳米拓扑时需要考虑的体内因素,以实现作为细胞-纳米材料界面的理想反应。预计在生物医学、组织工程和癌症研究领域会有应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验