Hao Xin, Huang Yi, Li Xueting, Song Yiying, Kong Xiangzhen, Wang Xu, Yang Zetian, Zhen Zonglei, Liu Jia
State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China.
Department of Psychology Tsinghua University Beijing China.
Brain Behav. 2016 Oct 3;6(12):e00572. doi: 10.1002/brb3.572. eCollection 2016 Dec.
Navigation is a fundamental and multidimensional cognitive function that individuals rely on to move around the environment. In this study, we investigated the neural basis of human spatial navigation ability.
A large cohort of participants (> 200) was examined on their navigation ability behaviorally and structural and functional magnetic resonance imaging (MRI) were then used to explore the corresponding neural basis of spatial navigation.
The gray matter volume (GMV) of the bilateral parahippocampus (PHG), retrosplenial complex (RSC), entorhinal cortex (EC), hippocampus (HPC), and thalamus (THAL) was correlated with the participants' self-reported navigational ability in general, and their sense of direction in particular. Further fMRI studies showed that the PHG, RSC, and EC selectively responded to visually presented scenes, whereas the HPC and THAL showed no selectivity, suggesting a functional division of labor among these regions in spatial navigation. The resting-state functional connectivity analysis further revealed a hierarchical neural network for navigation constituted by these regions, which can be further categorized into three relatively independent components (i.e., scene recognition component, cognitive map component, and the component of heading direction for locomotion, respectively).
Our study combined multi-modality imaging data to illustrate that multiple brain regions may work collaboratively to extract, integrate, store, and orientate spatial information to guide navigation behaviors.
导航是一种基本的多维度认知功能,个体依靠它在环境中移动。在本研究中,我们调查了人类空间导航能力的神经基础。
对一大群参与者(>200名)进行了行为导航能力测试,然后使用结构和功能磁共振成像(MRI)来探索空间导航相应的神经基础。
双侧海马旁回(PHG)、压后皮质复合体(RSC)、内嗅皮质(EC)、海马体(HPC)和丘脑(THAL)的灰质体积(GMV)总体上与参与者自我报告的导航能力相关,尤其与他们的方向感相关。进一步的功能磁共振成像研究表明,PHG、RSC和EC对视觉呈现的场景有选择性反应,而HPC和THAL没有选择性,这表明这些区域在空间导航中存在功能分工。静息态功能连接分析进一步揭示了由这些区域构成的导航分层神经网络,该网络可进一步分为三个相对独立的成分(即场景识别成分、认知地图成分和运动方向成分)。
我们的研究结合多模态成像数据表明,多个脑区可能协同工作以提取、整合、存储和定位空间信息,从而指导导航行为。