Silberhorn Elisabeth, Schwartz Uwe, Löffler Patrick, Schmitz Samuel, Symelka Anne, de Koning-Ward Tania, Merkl Rainer, Längst Gernot
Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Regensburg, Germany.
Biochemistry II; Biochemistry Centre Regensburg (BCR), University of Regensburg, Regensburg, Germany.
PLoS Pathog. 2016 Dec 29;12(12):e1006080. doi: 10.1371/journal.ppat.1006080. eCollection 2016 Dec.
The packaging and organization of genomic DNA into chromatin represents an additional regulatory layer of gene expression, with specific nucleosome positions that restrict the accessibility of regulatory DNA elements. The mechanisms that position nucleosomes in vivo are thought to depend on the biophysical properties of the histones, sequence patterns, like phased di-nucleotide repeats and the architecture of the histone octamer that folds DNA in 1.65 tight turns. Comparative studies of human and P. falciparum histones reveal that the latter have a strongly reduced ability to recognize internal sequence dependent nucleosome positioning signals. In contrast, the nucleosomes are positioned by AT-repeat sequences flanking nucleosomes in vivo and in vitro. Further, the strong sequence variations in the plasmodium histones, compared to other mammalian histones, do not present adaptations to its AT-rich genome. Human and parasite histones bind with higher affinity to GC-rich DNA and with lower affinity to AT-rich DNA. However, the plasmodium nucleosomes are overall less stable, with increased temperature induced mobility, decreased salt stability of the histones H2A and H2B and considerable reduced binding affinity to GC-rich DNA, as compared with the human nucleosomes. In addition, we show that plasmodium histone octamers form the shortest known nucleosome repeat length (155bp) in vitro and in vivo. Our data suggest that the biochemical properties of the parasite histones are distinct from the typical characteristics of other eukaryotic histones and these properties reflect the increased accessibility of the P. falciparum genome.
基因组DNA包装成染色质并进行组织化,代表了基因表达的另一个调控层面,特定的核小体位置会限制调控DNA元件的可及性。体内核小体定位的机制被认为取决于组蛋白的生物物理特性、序列模式,如相位双核苷酸重复序列,以及能将DNA折叠成1.65个紧密螺旋的组蛋白八聚体结构。对人类和恶性疟原虫组蛋白的比较研究表明,后者识别内部序列依赖性核小体定位信号的能力大幅降低。相反,在体内和体外,核小体由位于核小体两侧的AT重复序列定位。此外,与其他哺乳动物组蛋白相比,疟原虫组蛋白的强烈序列变异并非是对其富含AT的基因组的适应。人类和寄生虫组蛋白与富含GC的DNA结合亲和力更高,与富含AT的DNA结合亲和力更低。然而,与人类核小体相比,疟原虫核小体总体上稳定性更低,温度诱导的迁移率增加,组蛋白H2A和H2B的盐稳定性降低,与富含GC的DNA的结合亲和力大幅降低。此外,我们发现疟原虫组蛋白八聚体在体外和体内形成了已知最短的核小体重复长度(155bp)。我们的数据表明,寄生虫组蛋白的生化特性不同于其他真核生物组蛋白的典型特征,这些特性反映了恶性疟原虫基因组可及性的增加。