Lieleg Corinna, Krietenstein Nils, Walker Maria, Korber Philipp
Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336, Munich, Germany.
Chromosoma. 2015 Jun;124(2):131-51. doi: 10.1007/s00412-014-0501-x. Epub 2014 Dec 23.
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
真核细胞核DNA被包装成核小体。在过去十年中,跨物种的全基因组核小体图谱揭示了核小体定位的高度有序性。转录起始位点(TSS)周围存在保守的典型核小体组织,TSS上游有一个核小体缺失区域(NDR),基因体下游有一个与TSS对齐的均匀间隔核小体的规则阵列。由于核小体在很大程度上阻碍了对DNA的访问,从而提供了一个重要的基因组调控水平,因此了解产生核小体定位的机制,尤其是典型的NDR-阵列模式,具有普遍的研究意义。我们在此聚焦于最先进的模型——单细胞酵母,并回顾核小体图谱绘制方面的进展以及所讨论的核小体定位机制。有四个机制方面:NDR是如何产生的?单个核小体是如何定位的,特别是那些位于NDR两侧的核小体?核小体是如何均匀间隔形成规则阵列的?规则阵列是如何在TSS处对齐的?核小体定位决定因素的主要候选者是组蛋白八聚体的内在DNA结合偏好、特定的DNA结合因子、核小体重塑酶、转录和统计定位。我们在一个综合模型中总结了目前的研究现状,在该模型中,核小体由所有这些候选决定因素共同定位。我们强调了涉及核小体重塑酶的活性机制的主导地位,这些酶可能由DNA结合因子和转录机器招募。虽然近年来这个机制框架已经清晰显现,但其中涉及的因素及其机制仍知之甚少,需要未来结合体内和体外方法进行进一步研究。