Suppr超能文献

出院小结中问题-行动关系提取的因果模式与机器学习

Causality patterns and machine learning for the extraction of problem-action relations in discharge summaries.

作者信息

Seol Jae-Wook, Yi Wangjin, Choi Jinwook, Lee Kyung Soon

机构信息

Department of Information Convergence Research, Korea Institute of Science and Technology Information 245, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

Interdisciplinary Program of Bioengineering, College of Engineering, Seoul National University 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.

出版信息

Int J Med Inform. 2017 Feb;98:1-12. doi: 10.1016/j.ijmedinf.2016.10.021. Epub 2016 Nov 9.

Abstract

Clinical narrative text includes information related to a patient's medical history such as chronological progression of medical problems and clinical treatments. A chronological view of a patient's history makes clinical audits easier and improves quality of care. In this paper, we propose a clinical Problem-Action relation extraction method, based on clinical semantic units and event causality patterns, to present a chronological view of a patient's problem and a doctor's action. Based on our observation that a clinical text describes a patient's medical problems and a doctor's treatments in chronological order, a clinical semantic unit is defined as a problem and/or an action relation. Since a clinical event is a basic unit of the problem and action relation, events are extracted from narrative texts, based on the external knowledge resources context features of the conditional random fields. A clinical semantic unit is extracted from each sentence based on time expressions and context structures of events. Then, a clinical semantic unit is classified into a problem and/or action relation based on the event causality patterns of the support vector machines. Experimental results on Korean discharge summaries show 78.8% performance in the F1-measure. This result shows that the proposed method is effectively classifies clinical Problem-Action relations.

摘要

临床叙述文本包含与患者病史相关的信息,如医疗问题的时间进展和临床治疗情况。按时间顺序查看患者病史有助于临床审计,并提高护理质量。在本文中,我们提出一种基于临床语义单元和事件因果模式的临床问题 - 行动关系提取方法,以呈现患者问题和医生行动的时间顺序视图。基于我们的观察,即临床文本按时间顺序描述患者的医疗问题和医生的治疗,临床语义单元被定义为问题和/或行动关系。由于临床事件是问题和行动关系的基本单元,基于条件随机场的外部知识资源上下文特征从叙述文本中提取事件。根据事件的时间表达和上下文结构从每个句子中提取临床语义单元。然后,基于支持向量机的事件因果模式将临床语义单元分类为问题和/或行动关系。在韩国出院小结上的实验结果显示F1值为78.8%。该结果表明所提出的方法能有效分类临床问题 - 行动关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验