Suppr超能文献

用于捕捉韩国临床叙事中患者病史快照的时间分割

Temporal Segmentation for Capturing Snapshots of Patient Histories in Korean Clinical Narrative.

作者信息

Lee Wangjin, Choi Jinwook

机构信息

Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, Seoul, Korea.

Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea.

出版信息

Healthc Inform Res. 2018 Jul;24(3):179-186. doi: 10.4258/hir.2018.24.3.179. Epub 2018 Jul 31.

Abstract

OBJECTIVES

Clinical discharge summaries provide valuable information about patients' clinical history, which is helpful for the realization of intelligent healthcare applications. The documents tend to take the form of separate segments based on temporal or topical information. If a patient's clinical history can be seen as a consecutive sequence of clinical events, then each temporal segment can be seen as a snapshot, providing a certain clinical context at a specific moment. This study aimed to demonstrate a temporal segmentation method of Korean clinical narratives for identifying textual snapshots of patient history as a proof-of-a-concept.

METHODS

Our method uses pattern-based segmentation to approximate human recognition of the temporal or topical shifts in clinical documents. We utilized rheumatic patients' discharge summaries and transformed them into sequences of constituent chunks. We built 97 single pattern functions to denote whether a certain chunk has attributes that indicate that it can be a segment boundary. We manually defined the relationships between the pattern functions to resolve multiple pattern matchings and to make a final decision.

RESULTS

The algorithm segmented 30 discharge summaries and processed 1,849 decision points. Three human judges were asked whether they agreed with the algorithm's prediction, and the agreement percentage on the judges' majority opinion was 89.61%.

CONCLUSIONS

Although this method is based on manually constructed rules, our findings demonstrate that the proposed algorithm can achieve fairly good segmentation results, and it may be the basis for methodological improvement in the future.

摘要

目的

临床出院小结提供了有关患者临床病史的宝贵信息,这有助于实现智能医疗应用。这些文档倾向于根据时间或主题信息采用单独段落的形式。如果将患者的临床病史视为一系列连续的临床事件,那么每个时间段落都可以看作是一个快照,在特定时刻提供一定的临床背景。本研究旨在展示一种韩国临床叙述的时间分割方法,以识别患者病史的文本快照作为概念验证。

方法

我们的方法使用基于模式的分割来近似人类对临床文档中时间或主题变化的识别。我们利用了风湿性患者的出院小结,并将它们转换为组成块的序列。我们构建了97个单模式函数来表示某个块是否具有表明它可以作为段边界的属性。我们手动定义了模式函数之间的关系,以解决多个模式匹配问题并做出最终决策。

结果

该算法对30份出院小结进行了分割,并处理了1849个决策点。询问了三位人类评判员是否同意算法的预测,评判员多数意见的一致率为89.61%。

结论

尽管此方法基于手动构建的规则,但我们的研究结果表明,所提出的算法可以取得相当不错的分割结果,并且它可能是未来方法改进的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验