Suppr超能文献

利用活性胶体作为机器在微米尺度上进行编织和编织。

Using active colloids as machines to weave and braid on the micrometer scale.

作者信息

Goodrich Carl P, Brenner Michael P

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;

Kavli Institute of Bionano Sciences and Technology, Harvard University, Cambridge, MA 02138.

出版信息

Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):257-262. doi: 10.1073/pnas.1608838114. Epub 2016 Dec 29.

Abstract

Controlling motion at the microscopic scale is a fundamental goal in the development of biologically inspired systems. We show that the motion of active, self-propelled colloids can be sufficiently controlled for use as a tool to assemble complex structures such as braids and weaves out of microscopic filaments. Unlike typical self-assembly paradigms, these structures are held together by geometric constraints rather than adhesive bonds. The out-of-equilibrium assembly that we propose involves precisely controlling the 2D motion of active colloids so that their path has a nontrivial topology. We demonstrate with proof-of-principle Brownian dynamics simulations that, when the colloids are attached to long semiflexible filaments, this motion causes the filaments to braid. The ability of the active particles to provide sufficient force necessary to bend the filaments into a braid depends on a number of factors, including the self-propulsion mechanism, the properties of the filament, and the maximum curvature in the braid. Our work demonstrates that nonequilibrium assembly pathways can be designed using active particles.

摘要

在微观尺度上控制运动是受生物启发系统发展的一个基本目标。我们表明,活性自推进胶体的运动可以得到充分控制,用作从微观细丝组装复杂结构(如辫子和织物)的工具。与典型的自组装范式不同,这些结构是通过几何约束而非粘合剂结合在一起的。我们提出的非平衡组装涉及精确控制活性胶体的二维运动,使其路径具有非平凡拓扑结构。我们通过原理验证布朗动力学模拟表明,当胶体附着在长的半柔性细丝上时,这种运动会使细丝编织在一起。活性粒子提供将细丝弯曲成辫子所需足够力的能力取决于许多因素,包括自推进机制、细丝的特性以及辫子中的最大曲率。我们的工作表明,可以使用活性粒子设计非平衡组装途径。

相似文献

1
Using active colloids as machines to weave and braid on the micrometer scale.利用活性胶体作为机器在微米尺度上进行编织和编织。
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):257-262. doi: 10.1073/pnas.1608838114. Epub 2016 Dec 29.
2
Active Colloids as Models, Materials, and Machines.活性胶体:模型、材料与机器
Annu Rev Chem Biomol Eng. 2023 Jun 8;14:1-30. doi: 10.1146/annurev-chembioeng-101121-084939. Epub 2023 Mar 17.
3
Light-induced self-assembly of active rectification devices.光诱导活性整流器件的自组装
Sci Adv. 2016 Apr 1;2(4):e1501850. doi: 10.1126/sciadv.1501850. eCollection 2016 Apr.
5
Self-propelled torus colloids.自驱动环形胶体
J Chem Phys. 2020 Jul 7;153(1):014902. doi: 10.1063/5.0012265.
7
Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures.光激活胶体混合物的非平衡组装。
Adv Mater. 2017 Aug;29(32). doi: 10.1002/adma.201701328. Epub 2017 Jun 20.
8
Designing Micro- and Nanoswimmers for Specific Applications.为特定应用设计微纳游动器。
Acc Chem Res. 2017 Jan 17;50(1):2-11. doi: 10.1021/acs.accounts.6b00386. Epub 2016 Nov 3.

本文引用的文献

2
Light-induced self-assembly of active rectification devices.光诱导活性整流器件的自组装
Sci Adv. 2016 Apr 1;2(4):e1501850. doi: 10.1126/sciadv.1501850. eCollection 2016 Apr.
6
Size limits of self-assembled colloidal structures made using specific interactions.使用特定相互作用自组装胶体结构的尺寸限制。
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15918-23. doi: 10.1073/pnas.1411765111. Epub 2014 Oct 27.
7
Light-activated self-propelled colloids.光激活自推进胶体
Philos Trans A Math Phys Eng Sci. 2014 Nov 28;372(2029). doi: 10.1098/rsta.2013.0372.
9
Living crystals of light-activated colloidal surfers.光激活胶体冲浪者的活体水晶。
Science. 2013 Feb 22;339(6122):936-40. doi: 10.1126/science.1230020. Epub 2013 Jan 31.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验