Department of Chemical Engineering, Columbia University, New York, NY, USA; email:
Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA.
Annu Rev Chem Biomol Eng. 2023 Jun 8;14:1-30. doi: 10.1146/annurev-chembioeng-101121-084939. Epub 2023 Mar 17.
Active colloids use energy input at the particle level to propel persistent motion and direct dynamic assemblies. We consider three types of colloids animated by chemical reactions, time-varying magnetic fields, and electric currents. For each type, we review the basic propulsion mechanisms at the particle level and discuss their consequences for collective behaviors in particle ensembles. These microscopic systems provide useful experimental models of nonequilibrium many-body physics in which dissipative currents break time-reversal symmetry. Freed from the constraints of thermodynamic equilibrium, active colloids assemble to form materials that move, reconfigure, heal, and adapt. Colloidal machines based on engineered particles and their assemblies provide a basis for mobile robots with increasing levels of autonomy. This review provides a conceptual framework for understanding and applying active colloids to create material systems that mimic the functions of living matter. We highlight opportunities for chemical engineers to contribute to this growing field.
活性胶体利用颗粒层面的能量输入来推动持续运动和定向动态组装。我们考虑了三种通过化学反应、时变磁场和电流来驱动的胶体。对于每一种类型,我们回顾了颗粒层面的基本推进机制,并讨论了它们对颗粒集合体中集体行为的影响。这些微观系统为非平衡多体物理提供了有用的实验模型,其中耗散电流破坏了时间反演对称性。从热力学平衡的限制中解放出来后,活性胶体组装成移动、重新配置、自我修复和适应的材料。基于工程化颗粒及其组装体的胶体机器为具有更高自主性的移动机器人提供了基础。本综述为理解和应用活性胶体创造模仿生命物质功能的材料系统提供了一个概念框架。我们强调了化学工程师在这个不断发展的领域做出贡献的机会。