Saad-Roy C M, van den Driessche P, Yakubu Abdul-Aziz
Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 2Y2, Canada.
Department of Mathematics, Howard University, Washington, DC, 20059, USA.
Bull Math Biol. 2017 Feb;79(2):303-324. doi: 10.1007/s11538-016-0238-1. Epub 2016 Dec 29.
A general mathematical model of anthrax (caused by Bacillus anthracis) transmission is formulated that includes live animals, infected carcasses and spores in the environment. The basic reproduction number [Formula: see text] is calculated, and existence of a unique endemic equilibrium is established for [Formula: see text] above the threshold value 1. Using data from the literature, elasticity indices for [Formula: see text] and type reproduction numbers are computed to quantify anthrax control measures. Including only herbivorous animals, anthrax is eradicated if [Formula: see text]. For these animals, oscillatory solutions arising from Hopf bifurcations are numerically shown to exist for certain parameter values with [Formula: see text] and to have periodicity as observed from anthrax data. Including carnivores and assuming no disease-related death, anthrax again goes extinct below the threshold. Local stability of the endemic equilibrium is established above the threshold; thus, periodic solutions are not possible for these populations. It is shown numerically that oscillations in spore growth may drive oscillations in animal populations; however, the total number of infected animals remains about the same as with constant spore growth.
建立了一个炭疽(由炭疽杆菌引起)传播的通用数学模型,该模型包括活体动物、受感染的尸体和环境中的孢子。计算了基本繁殖数[公式:见正文],并为高于阈值1的[公式:见正文]建立了唯一地方病平衡点的存在性。利用文献中的数据,计算了[公式:见正文]和类型繁殖数的弹性指数,以量化炭疽控制措施。仅包括食草动物时,如果[公式:见正文],炭疽就会被根除。对于这些动物,从数值上表明,在某些参数值下,当[公式:见正文]时,会出现由霍普夫分岔产生的振荡解,并且具有从炭疽数据中观察到的周期性。包括食肉动物并假设无疾病相关死亡时,炭疽在阈值以下再次灭绝。在阈值以上建立了地方病平衡点的局部稳定性;因此,这些种群不可能出现周期解。从数值上表明,孢子生长的振荡可能驱动动物种群的振荡;然而,受感染动物的总数与孢子恒定生长时大致相同。