Suppr超能文献

离散时间传染病模型中的疾病灭绝与持续。

Disease Extinction Versus Persistence in Discrete-Time Epidemic Models.

机构信息

Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 2Y2, Canada.

Department of Mathematics, Howard University, Washington, DC, 20059, USA.

出版信息

Bull Math Biol. 2019 Nov;81(11):4412-4446. doi: 10.1007/s11538-018-0426-2. Epub 2018 Apr 12.

Abstract

We focus on discrete-time infectious disease models in populations that are governed by constant, geometric, Beverton-Holt or Ricker demographic equations, and give a method for computing the basic reproduction number, [Formula: see text]. When [Formula: see text] and the demographic population dynamics are asymptotically constant or under geometric growth (non-oscillatory), we prove global asymptotic stability of the disease-free equilibrium of the disease models. Under the same demographic assumption, when [Formula: see text], we prove uniform persistence of the disease. We apply our theoretical results to specific discrete-time epidemic models that are formulated for SEIR infections, cholera in humans and anthrax in animals. Our simulations show that a unique endemic equilibrium of each of the three specific disease models is asymptotically stable whenever [Formula: see text].

摘要

我们专注于由常数、几何、贝弗顿-霍尔特或里克尔人口方程控制的离散时间传染病模型,并给出了一种计算基本繁殖数[Formula: see text]的方法。当[Formula: see text]且人口动态是渐近常数或呈几何增长(非振荡)时,我们证明了疾病模型无病平衡点的全局渐近稳定性。在相同的人口假设下,当[Formula: see text]时,我们证明了疾病的一致持久性。我们将理论结果应用于特定的离散时间传染病模型,这些模型是针对 SEIR 感染、人类霍乱和动物炭疽制定的。我们的模拟表明,只要[Formula: see text],三个特定疾病模型中的每个地方病平衡点都是渐近稳定的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验