Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 2Y2, Canada.
Department of Mathematics, Howard University, Washington, DC, 20059, USA.
Bull Math Biol. 2019 Nov;81(11):4412-4446. doi: 10.1007/s11538-018-0426-2. Epub 2018 Apr 12.
We focus on discrete-time infectious disease models in populations that are governed by constant, geometric, Beverton-Holt or Ricker demographic equations, and give a method for computing the basic reproduction number, [Formula: see text]. When [Formula: see text] and the demographic population dynamics are asymptotically constant or under geometric growth (non-oscillatory), we prove global asymptotic stability of the disease-free equilibrium of the disease models. Under the same demographic assumption, when [Formula: see text], we prove uniform persistence of the disease. We apply our theoretical results to specific discrete-time epidemic models that are formulated for SEIR infections, cholera in humans and anthrax in animals. Our simulations show that a unique endemic equilibrium of each of the three specific disease models is asymptotically stable whenever [Formula: see text].
我们专注于由常数、几何、贝弗顿-霍尔特或里克尔人口方程控制的离散时间传染病模型,并给出了一种计算基本繁殖数[Formula: see text]的方法。当[Formula: see text]且人口动态是渐近常数或呈几何增长(非振荡)时,我们证明了疾病模型无病平衡点的全局渐近稳定性。在相同的人口假设下,当[Formula: see text]时,我们证明了疾病的一致持久性。我们将理论结果应用于特定的离散时间传染病模型,这些模型是针对 SEIR 感染、人类霍乱和动物炭疽制定的。我们的模拟表明,只要[Formula: see text],三个特定疾病模型中的每个地方病平衡点都是渐近稳定的。