Suppr超能文献

神经母细胞瘤,儿科肿瘤学大数据科学的一个范例。

Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology.

作者信息

Salazar Brittany M, Balczewski Emily A, Ung Choong Yong, Zhu Shizhen

机构信息

Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.

Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.

出版信息

Int J Mol Sci. 2016 Dec 27;18(1):37. doi: 10.3390/ijms18010037.

Abstract

Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring "big data" applications in pediatric oncology. Computational strategies derived from big data science-network- and machine learning-based modeling and drug repositioning-hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which "big data" and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.

摘要

与大多数成人癌症相比,儿童癌症很少出现复发性突变事件。这给理解癌症在幼儿期如何发生、发展和转移带来了挑战。此外,由于检测到的驱动突变有限,很难为药物开发确定关键基因。在本综述中,我们将神经母细胞瘤(一种源自神经嵴的儿童实体瘤)作为探索“大数据”在儿童肿瘤学中应用的范例。源自大数据科学的计算策略——基于网络和机器学习的建模以及药物重新定位——有望为驱动神经母细胞瘤发病机制的分子机制提供新的线索,并确定对抗这种毁灭性疾病的潜在疗法。这些策略整合了来自基因组和转录组研究、临床数据以及神经母细胞瘤和其他紧密模拟其生物学特征的癌症类型的体内和体外实验模型的强大数据输入。我们讨论了“大数据”和计算方法(尤其是基于网络的建模)可能推进神经母细胞瘤研究的背景,描述了当前可用的数据和资源,并为神经母细胞瘤及其他相关疾病提出了战略数据收集和分析的未来模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa4/5297672/19b7d1c6dbed/ijms-18-00037-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验