Suppr超能文献

胜者之咒校正和可变阈值法可提高基于全基因组关联研究汇总水平数据的多基因风险建模性能。

Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data.

作者信息

Shi Jianxin, Park Ju-Hyun, Duan Jubao, Berndt Sonja T, Moy Winton, Yu Kai, Song Lei, Wheeler William, Hua Xing, Silverman Debra, Garcia-Closas Montserrat, Hsiung Chao Agnes, Figueroa Jonine D, Cortessis Victoria K, Malats Núria, Karagas Margaret R, Vineis Paolo, Chang I-Shou, Lin Dongxin, Zhou Baosen, Seow Adeline, Matsuo Keitaro, Hong Yun-Chul, Caporaso Neil E, Wolpin Brian, Jacobs Eric, Petersen Gloria M, Klein Alison P, Li Donghui, Risch Harvey, Sanders Alan R, Hsu Li, Schoen Robert E, Brenner Hermann, Stolzenberg-Solomon Rachael, Gejman Pablo, Lan Qing, Rothman Nathaniel, Amundadottir Laufey T, Landi Maria Teresa, Levinson Douglas F, Chanock Stephen J, Chatterjee Nilanjan

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America.

Department of Statistics, Dongguk University, Seoul, Korea.

出版信息

PLoS Genet. 2016 Dec 30;12(12):e1006493. doi: 10.1371/journal.pgen.1006493. eCollection 2016 Dec.

Abstract

Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), a simple modelling technique that can be implemented using summary-level data from the discovery samples. We herein propose modifications to improve the performance of PRS. We introduce threshold-dependent winner's-curse adjustments for marginal association coefficients that are used to weight the single-nucleotide polymorphisms (SNPs) in PRS. Further, as a way to incorporate external functional/annotation knowledge that could identify subsets of SNPs highly enriched for associations, we propose variable thresholds for SNPs selection. We applied our methods to GWAS summary-level data of 14 complex diseases. Across all diseases, a simple winner's curse correction uniformly led to enhancement of performance of the models, whereas incorporation of functional SNPs was beneficial only for selected diseases. Compared to the standard PRS algorithm, the proposed methods in combination led to notable gain in efficiency (25-50% increase in the prediction R2) for 5 of 14 diseases. As an example, for GWAS of type 2 diabetes, winner's curse correction improved prediction R2 from 2.29% based on the standard PRS to 3.10% (P = 0.0017) and incorporating functional annotation data further improved R2 to 3.53% (P = 2×10-5). Our simulation studies illustrate why differential treatment of certain categories of functional SNPs, even when shown to be highly enriched for GWAS-heritability, does not lead to proportionate improvement in genetic risk-prediction because of non-uniform linkage disequilibrium structure.

摘要

近期的遗传力分析表明,全基因组关联研究(GWAS)有潜力基于多基因风险评分(PRS)改善复杂疾病的遗传风险预测,PRS是一种简单的建模技术,可使用来自发现样本的汇总水平数据来实施。我们在此提出改进措施以提高PRS的性能。我们针对用于加权PRS中单核苷酸多态性(SNP)的边际关联系数引入了阈值依赖的胜者之咒调整。此外,作为纳入可识别高度富集关联的SNP子集的外部功能/注释知识的一种方法,我们提出了用于SNP选择的可变阈值。我们将我们的方法应用于14种复杂疾病的GWAS汇总水平数据。在所有疾病中,简单的胜者之咒校正一致地提高了模型的性能,而纳入功能SNP仅对选定的疾病有益。与标准PRS算法相比,所提出的方法相结合使14种疾病中的5种疾病的效率显著提高(预测R2增加25 - 50%)。例如,对于2型糖尿病的GWAS,胜者之咒校正将基于标准PRS的预测R2从2.29%提高到3.10%(P = 0.0017),纳入功能注释数据进一步将R2提高到3.53%(P = 2×10-5)。我们的模拟研究说明了为什么即使某些类别的功能SNP在GWAS遗传力方面显示出高度富集,但由于非均匀的连锁不平衡结构,对其进行差异化处理并不会导致遗传风险预测成比例地改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d541/5201242/4291d04bd833/pgen.1006493.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验