Wesener Darryl A, Levengood Matthew R, Kiessling Laura L
From the Department of Biochemistry and.
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706.
J Biol Chem. 2017 Feb 17;292(7):2944-2955. doi: 10.1074/jbc.M116.759340. Epub 2016 Dec 30.
The suborder Corynebacterineae encompasses species like , which has been harnessed for industrial production of amino acids, as well as and , which cause devastating human diseases. A distinctive component of the Corynebacterineae cell envelope is the mycolyl-arabinogalactan (mAG) complex. The mAG is composed of lipid mycolic acids, and arabinofuranose (Ara) and galactofuranose (Gal) carbohydrate residues. Elucidating microbe-specific differences in mAG composition could advance biotechnological applications and lead to new antimicrobial targets. To this end, we compare and contrast galactan biosynthesis in and In each species, the galactan is constructed from uridine 5'-diphosphate-α-d-galactofuranose (UDP-Gal), which is generated by the enzyme UDP-galactopyranose mutase (UGM or Glf). UGM and the galactan are essential in but their importance in Corynebacterium species was not known. We show that small molecule inhibitors of UGM impede growth, suggesting that the galactan is critical in corynebacteria. Previous cell wall analysis data suggest the galactan polymer is longer in mycobacterial species than corynebacterial species. To explore the source of galactan length variation, a ortholog of the carbohydrate polymerase responsible for the bulk of galactan polymerization, GlfT2, was produced, and its catalytic activity was evaluated. The GlfT2 gave rise to shorter polysaccharides than those obtained with the GlfT2. These data suggest that GlfT2 alone can influence galactan length. Our results provide tools, both small molecule and genetic, for probing and perturbing the assembly of the Corynebacterineae cell envelope.
棒杆菌亚目包含如谷氨酸棒杆菌等物种,该菌已被用于氨基酸的工业生产,还有结核分枝杆菌和麻风分枝杆菌,它们会引发严重的人类疾病。棒杆菌亚目细胞壁的一个独特成分是霉菌酸-阿拉伯半乳聚糖(mAG)复合物。mAG由脂质霉菌酸以及阿拉伯呋喃糖(Ara)和半乳呋喃糖(Gal)碳水化合物残基组成。阐明mAG组成中微生物特异性差异可能会推动生物技术应用,并带来新的抗菌靶点。为此,我们比较并对比了结核分枝杆菌和谷氨酸棒杆菌中半乳聚糖的生物合成。在每个物种中,半乳聚糖由尿苷5'-二磷酸-α-D-半乳呋喃糖(UDP-Gal)构建而成,UDP-Gal由尿苷二磷酸半乳糖吡喃糖变位酶(UGM或Glf)生成。UGM和半乳聚糖在结核分枝杆菌中至关重要,但它们在棒杆菌属物种中的重要性尚不清楚。我们表明,UGM的小分子抑制剂会阻碍谷氨酸棒杆菌的生长,这表明半乳聚糖在棒杆菌中至关重要。先前的细胞壁分析数据表明,分枝杆菌属物种中的半乳聚糖聚合物比棒杆菌属物种中的更长。为了探究半乳聚糖长度变化的来源,我们制备了负责大部分半乳聚糖聚合的碳水化合物聚合酶GlfT2的结核分枝杆菌直系同源物,并评估了其催化活性。结核分枝杆菌的GlfT2产生的多糖比谷氨酸棒杆菌的GlfT2产生的多糖短。这些数据表明,仅GlfT2就能影响半乳聚糖的长度。我们的结果提供了小分子和基因工具,用于探究和干扰棒杆菌亚目细胞壁的组装。