Suppr超能文献

内容分析的可靠性:语义特征规范分类案例。

Reliability in content analysis: The case of semantic feature norms classification.

机构信息

Argumentation and Rethoric, Universiteit van Amsterdam, Amsterdam, Netherlands.

出版信息

Behav Res Methods. 2017 Dec;49(6):1984-2001. doi: 10.3758/s13428-016-0838-6.

Abstract

Semantic feature norms (e.g., STIMULUS: car → RESPONSE: ) are commonly used in cognitive psychology to look into salient aspects of given concepts. Semantic features are typically collected in experimental settings and then manually annotated by the researchers into feature types (e.g., perceptual features, taxonomic features, etc.) by means of content analyses-that is, by using taxonomies of feature types and having independent coders perform the annotation task. However, the ways in which such content analyses are typically performed and reported are not consistent across the literature. This constitutes a serious methodological problem that might undermine the theoretical claims based on such annotations. In this study, we first offer a review of some of the released datasets of annotated semantic feature norms and the related taxonomies used for content analysis. We then provide theoretical and methodological insights in relation to the content analysis methodology. Finally, we apply content analysis to a new dataset of semantic features and show how the method should be applied in order to deliver reliable annotations and replicable coding schemes. We tackle the following issues: (1) taxonomy structure, (2) the description of categories, (3) coder training, and (4) sustainability of the coding scheme-that is, comparison of the annotations provided by trained versus novice coders. The outcomes of the project are threefold: We provide methodological guidelines for semantic feature classification; we provide a revised and adapted taxonomy that can (arguably) be applied to both concrete and abstract concepts; and we provide a dataset of annotated semantic feature norms.

摘要

语义特征规范(例如,刺激:汽车→反应:<有四个轮子>)通常用于认知心理学,以研究给定概念的显著方面。语义特征通常在实验环境中收集,然后由研究人员通过内容分析(即使用特征类型的分类法,并让独立的编码员执行注释任务)手动注释为特征类型(例如感知特征、分类特征等)。然而,这种内容分析通常的执行方式和报告方式在文献中并不一致。这构成了一个严重的方法论问题,可能会破坏基于这些注释的理论主张。在这项研究中,我们首先回顾了一些已发布的语义特征规范注释数据集和用于内容分析的相关分类法。然后,我们提供了与内容分析方法相关的理论和方法见解。最后,我们将内容分析应用于一个新的语义特征数据集,并展示了如何应用该方法以提供可靠的注释和可重复的编码方案。我们解决了以下问题:(1)分类法结构,(2)类别描述,(3)编码员培训,以及(4)编码方案的可持续性,即,比较经过培训和新手编码员提供的注释。该项目的结果有三个方面:我们为语义特征分类提供了方法学指南;我们提供了一个经过修订和改编的分类法,它可以(可以说)应用于具体和抽象概念;并且我们提供了一个带有注释的语义特征规范数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验