Hamzeiy Hamid, Cox Jürgen
Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Martinsried, Germany.
Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Martinsried, Germany.
Curr Opin Biotechnol. 2017 Feb;43:141-146. doi: 10.1016/j.copbio.2016.11.014. Epub 2016 Dec 28.
Computational workflows for mass spectrometry-based shotgun proteomics and untargeted metabolomics share many steps. Despite the similarities, untargeted metabolomics is lagging behind in terms of reliable fully automated quantitative data analysis. We argue that metabolomics will strongly benefit from the adaptation of successful automated proteomics workflows to metabolomics. MaxQuant is a popular platform for proteomics data analysis and is widely considered to be superior in achieving high precursor mass accuracies through advanced nonlinear recalibration, usually leading to five to ten-fold better accuracy in complex LC-MS/MS runs. This translates to a sharp decrease in the number of peptide candidates per measured feature, thereby strongly improving the coverage of identified peptides. We argue that similar strategies can be applied to untargeted metabolomics, leading to equivalent improvements in metabolite identification.
基于质谱的鸟枪法蛋白质组学和非靶向代谢组学的计算工作流程有许多共同步骤。尽管存在相似之处,但在可靠的全自动定量数据分析方面,非靶向代谢组学仍滞后。我们认为,将成功的自动化蛋白质组学工作流程应用于代谢组学,代谢组学将受益匪浅。MaxQuant是蛋白质组学数据分析的一个流行平台,通常被广泛认为在通过先进的非线性重新校准实现高前体质量准确度方面表现出色,这通常会使复杂的液相色谱-串联质谱(LC-MS/MS)运行中的准确度提高五到十倍。这导致每个测量特征的肽候选物数量大幅减少,从而显著提高已鉴定肽的覆盖率。我们认为,类似的策略可应用于非靶向代谢组学,从而在代谢物鉴定方面带来同等程度的改进。