Promislow Keith, Wu Qiliang
Department of Mathematics, Michigan State University, 619 Red Cedar Road, East Lansing, MI, 48824, USA.
J Math Biol. 2017 Aug;75(2):443-489. doi: 10.1007/s00285-016-1089-y. Epub 2016 Dec 31.
Multicomponent bilayer structures arise as the ubiquitous plasma membrane in cellular biology and as blends of amphiphilic copolymers used in electrolyte membranes, drug delivery, and emulsion stabilization within the context of synthetic chemistry. We present the multicomponent functionalized Cahn-Hilliard (mFCH) free energy as a model which allows competition between bilayers with distinct composition and between bilayers and higher codimensional structures, such as co-dimension two filaments and co-dimension three micelles. We construct symmetric and asymmetric homoclinic bilayer profiles via a billiard limit potential and show that co-dimensional bifurcation is driven by the experimentally observed layer-by-layer pearling mechanism. We investigate the stability and slow geometric evolution of multicomponent bilayer interfaces within the context of an [Formula: see text] gradient flow of the mFCH, addressing the impact of aspect ratio of the amphiphile (lipid or copolymer unit) on the intrinsic curvature and the codimensional bifurcation. In particular we derive a Canham-Helfrich sharp interface energy whose intrinsic curvature arises through a Melnikov parameter associated to amphiphile aspect ratio.
多组分双层结构在细胞生物学中以普遍存在的质膜形式出现,在合成化学领域中则作为用于电解质膜、药物递送和乳液稳定化的两亲共聚物混合物出现。我们提出了多组分功能化的卡恩 - 希利厄德(mFCH)自由能作为一种模型,该模型允许具有不同组成的双层之间以及双层与更高余维结构(如二维细丝和三维胶束)之间存在竞争。我们通过台球极限势构建对称和非对称同宿双层轮廓,并表明余维分岔是由实验观察到的逐层成珠机制驱动的。我们在mFCH的[公式:见文本]梯度流的背景下研究多组分双层界面的稳定性和缓慢几何演化,探讨两亲物(脂质或共聚物单元)的纵横比对固有曲率和余维分岔的影响。特别是,我们推导了一种卡恩 - 赫尔弗里希尖锐界面能,其固有曲率通过与两亲物纵横比相关的梅尔尼科夫参数产生。