Suppr超能文献

具有强电感耦合的MRI表面线圈对。

MRI surface-coil pair with strong inductive coupling.

作者信息

Mett Richard R, Sidabras Jason W, Hyde James S

机构信息

Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

出版信息

Rev Sci Instrum. 2016 Dec;87(12):124704. doi: 10.1063/1.4972391.

Abstract

A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.

摘要

使用一种新型的电感耦合线圈对来获取磁共振体模图像。使用这种结构的原理在R. R. Mett等人的文献[《科学仪器评论》87, 084703 (2016)]中有描述。最初的原理是提高小直径表面线圈的品质因数,以便实现样品的主导负载。还观察到矢量接收场(VRF)有显著改善。线圈组件由一个内径10.4毫米、外径15.1毫米、高10毫米的3匝超金属自谐振螺旋(SRS)和一个直径25毫米、高2毫米的单环均衡线圈组成。使用了低频并联模式,其中每个线圈上的射频电流产生相长叠加的磁场。制作了SRS线圈组件,并使用组织等效的30%聚丙烯酰胺体模收集数据。线圈之间的大电感耦合产生了射频电流和磁场的相位相干性。有限元模拟表明,该线圈对的VRF比直径15毫米的单环线圈大约4.4倍。线圈之间的互耦影响线圈之间的电流比,进而影响VRF和信噪比(SNR)。在9.4 T下对组织等效体模的数据显示,在25毫米深度和直径范围内平均,与15毫米环相比,总SNR提高了8.8。实验结果表明与线圈中自旋感应电动势的磁共振理论、电感耦合谐振电路理论以及叠加原理一致。这些方法对于磁共振和其他类型的信号检测是通用的,并且可以在很宽的工作频率范围内使用。

相似文献

1
MRI surface-coil pair with strong inductive coupling.
Rev Sci Instrum. 2016 Dec;87(12):124704. doi: 10.1063/1.4972391.
2
Inductively coupled wireless RF coil arrays.
Magn Reson Imaging. 2015 Apr;33(3):351-7. doi: 10.1016/j.mri.2014.12.004. Epub 2014 Dec 16.
3
Experimental verification of SNR and parallel imaging improvements using composite arrays.
NMR Biomed. 2015 Feb;28(2):141-53. doi: 10.1002/nbm.3230. Epub 2014 Nov 11.
5
Improving SNR of RF coils using composite coil elements.
NMR Biomed. 2009 Nov;22(9):952-9. doi: 10.1002/nbm.1410.
6
Wireless coils based on resonant and nonresonant coupled-wire structure for small animal multinuclear imaging.
NMR Biomed. 2019 May;32(5):e4079. doi: 10.1002/nbm.4079. Epub 2019 Feb 17.
9
Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study.
Rofo. 2013 Sep;185(9):830-7. doi: 10.1055/s-0033-1335796. Epub 2013 Jul 25.
10
A volume microstrip RF coil for MRI microscopy.
Magn Reson Imaging. 2012 Jan;30(1):70-7. doi: 10.1016/j.mri.2011.07.010. Epub 2011 Nov 4.

引用本文的文献

1
Asymmetric spin echo multi-echo echo planar imaging (ASEME-EPI) sequence for pre-clinical high-field fMRI.
bioRxiv. 2024 Oct 13:2024.10.12.617985. doi: 10.1101/2024.10.12.617985.
5
Focal fMRI signal enhancement with implantable inductively coupled detectors.
Neuroimage. 2022 Feb 15;247:118793. doi: 10.1016/j.neuroimage.2021.118793. Epub 2021 Dec 8.
6
Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix.
Sci Adv. 2019 Oct 4;5(10):eaay1394. doi: 10.1126/sciadv.aay1394. eCollection 2019 Oct.
7
Rutile dielectric loop-gap resonator for X-band EPR spectroscopy of small aqueous samples.
J Magn Reson. 2019 Oct;307:106585. doi: 10.1016/j.jmr.2019.106585. Epub 2019 Aug 28.
8
Wireless coils based on resonant and nonresonant coupled-wire structure for small animal multinuclear imaging.
NMR Biomed. 2019 May;32(5):e4079. doi: 10.1002/nbm.4079. Epub 2019 Feb 17.
9
Autobiography of James S. Hyde.
Appl Magn Reson. 2017 Dec;48(11-12):1103-1147. doi: 10.1007/s00723-017-0950-5. Epub 2017 Oct 27.

本文引用的文献

1
Meta-metallic coils and resonators: Methods for high Q-value resonant geometries.
Rev Sci Instrum. 2016 Aug;87(8):084703. doi: 10.1063/1.4961573.
2
Restoring susceptibility induced MRI signal loss in rat brain at 9.4 T: A step towards whole brain functional connectivity imaging.
PLoS One. 2015 Apr 6;10(4):e0119450. doi: 10.1371/journal.pone.0119450. eCollection 2015.
3
The signal-to-noise ratio of the nuclear magnetic resonance experiment. 1976.
J Magn Reson. 2011 Dec;213(2):329-43. doi: 10.1016/j.jmr.2011.09.018.
6
Radio frequency coil technology for small-animal MRI.
NMR Biomed. 2007 May;20(3):304-25. doi: 10.1002/nbm.1149.
7
Inductively-overcoupled coil design for high resolution magnetic resonance imaging.
Biomed Eng Online. 2006 Jan 9;5:3. doi: 10.1186/1475-925X-5-3.
8
The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz.
Phys Med Biol. 1996 Nov;41(11):2251-69. doi: 10.1088/0031-9155/41/11/002.
9
Noise performance of surface coils for magnetic resonance imaging at 1.5 T.
Med Phys. 1985 Sep-Oct;12(5):604-7. doi: 10.1118/1.595682.
10
Counter rotating current local coils for high-resolution magnetic resonance imaging.
Magn Reson Med. 1986 Aug;3(4):590-603. doi: 10.1002/mrm.1910030412.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验