Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Max Planck Institute for the Science of Light, 91058, Erlangen, Germany.
Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany.
Neuroimage. 2022 Feb 15;247:118793. doi: 10.1016/j.neuroimage.2021.118793. Epub 2021 Dec 8.
Despite extensive efforts to increase the signal-to-noise ratio (SNR) of fMRI images for brain-wide mapping, technical advances of focal brain signal enhancement are lacking, in particular, for animal brain imaging. Emerging studies have combined fMRI with fiber optic-based optogenetics to decipher circuit-specific neuromodulation from meso to macroscales. High-resolution fMRI is needed to integrate hemodynamic responses into cross-scale functional dynamics, but the SNR remains a limiting factor given the complex implantation setup of animal brains. Here, we developed a multimodal fMRI imaging platform with an implanted inductive coil detector. This detector boosts the tSNR of MRI images, showing a 2-3-fold sensitivity gain over conventional coil configuration. In contrast to the cryoprobe or array coils with limited spaces for implanted brain interface, this setup offers a unique advantage to study brain circuit connectivity with optogenetic stimulation and can be further extended to other multimodal fMRI mapping schemes.
尽管已经做出了大量努力来提高 fMRI 图像的信噪比 (SNR) 以实现全脑图谱绘制,但在增强焦点脑信号方面的技术进展却一直缺乏,尤其是在动物脑成像方面。新兴研究将 fMRI 与基于光纤的光遗传学相结合,以从介观到宏观尺度上破译特定于回路的神经调节。需要高分辨率 fMRI 将血液动力学反应整合到跨尺度功能动力学中,但鉴于动物大脑的复杂植入设置,SNR 仍然是一个限制因素。在这里,我们开发了一种具有植入式感应线圈探测器的多模态 fMRI 成像平台。该探测器可提高 MRI 图像的 tSNR,相对于传统线圈配置,灵敏度提高了 2-3 倍。与冷冻探针或阵列线圈相比,这种设置为使用光遗传学刺激研究大脑回路连接提供了独特的优势,并且可以进一步扩展到其他多模态 fMRI 映射方案。