Suppr超能文献

使用典型相关分析对任务 fMRI 数据进行多元组水平分析。

Multivariate group-level analysis for task fMRI data with canonical correlation analysis.

机构信息

Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, USA.

Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, 80309, USA.

出版信息

Neuroimage. 2019 Jul 1;194:25-41. doi: 10.1016/j.neuroimage.2019.03.030. Epub 2019 Mar 17.

Abstract

Task-based functional Magnetic Resonance Imaging (fMRI) has been widely used to determine population-based brain activations for cognitive tasks. Popular group-level analysis in fMRI is based on the general linear model and constitutes a univariate method. However, univariate methods are known to suffer from low sensitivity for a given specificity because the spatial covariance structure at each voxel is not taken entirely into account. In this study, a spatially constrained local multivariate model is introduced for group-level analysis to improve sensitivity at a given specificity for activation detection. The proposed model is formulated in terms of a multivariate constrained optimization problem based on the maximum log likelihood method and solved efficiently with numerical optimization techniques. Both simulated data mimicking real fMRI time series at multiple noise fractions and real fMRI episodic memory data have been used to evaluate the performance of the proposed method. For simulated data, the area under the receiver operating characteristic curves in detecting group activations increases for the subject and group level multivariate method by 20%, as compared to the univariate method. Results from real fMRI data indicate a significant increase in group-level activation detection, particularly in hippocampus, para-hippocampal area and nearby medial temporal lobe regions with the proposed method.

摘要

基于任务的功能磁共振成像(fMRI)已被广泛用于确定认知任务的基于人群的大脑激活。fMRI 中流行的组水平分析基于一般线性模型,构成单变量方法。然而,由于每个体素的空间协方差结构没有完全考虑在内,因此单变量方法已知特异性下的灵敏度较低。在这项研究中,引入了一种空间约束局部多变量模型,用于组水平分析,以提高给定特异性下的激活检测灵敏度。所提出的模型是基于最大似然方法的多元约束优化问题来制定的,并通过数值优化技术有效地解决。模拟数据模拟了多个噪声分数的真实 fMRI 时间序列,以及真实的 fMRI 情景记忆数据,用于评估所提出方法的性能。对于模拟数据,与单变量方法相比,在检测组激活方面,受试者和组水平多变量方法的受试者工作特征曲线下面积增加了 20%。来自真实 fMRI 数据的结果表明,与提出的方法相比,组水平激活检测显著增加,特别是在海马体、海马旁回和附近的内侧颞叶区域。

相似文献

10
Support vector machine learning-based fMRI data group analysis.基于支持向量机学习的功能磁共振成像数据组分析
Neuroimage. 2007 Jul 15;36(4):1139-51. doi: 10.1016/j.neuroimage.2007.03.072. Epub 2007 Apr 27.

本文引用的文献

9
Functional and effective connectivity: a review.功能连接和有效连接:综述。
Brain Connect. 2011;1(1):13-36. doi: 10.1089/brain.2011.0008.
10
Multivariate pattern analysis of fMRI: the early beginnings.功能磁共振成像的多变量模式分析:早期起源。
Neuroimage. 2012 Aug 15;62(2):852-5. doi: 10.1016/j.neuroimage.2012.03.016. Epub 2012 Mar 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验