Suppr超能文献

使用典型相关分析对任务 fMRI 数据进行多元组水平分析。

Multivariate group-level analysis for task fMRI data with canonical correlation analysis.

机构信息

Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, USA.

Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, 80309, USA.

出版信息

Neuroimage. 2019 Jul 1;194:25-41. doi: 10.1016/j.neuroimage.2019.03.030. Epub 2019 Mar 17.

Abstract

Task-based functional Magnetic Resonance Imaging (fMRI) has been widely used to determine population-based brain activations for cognitive tasks. Popular group-level analysis in fMRI is based on the general linear model and constitutes a univariate method. However, univariate methods are known to suffer from low sensitivity for a given specificity because the spatial covariance structure at each voxel is not taken entirely into account. In this study, a spatially constrained local multivariate model is introduced for group-level analysis to improve sensitivity at a given specificity for activation detection. The proposed model is formulated in terms of a multivariate constrained optimization problem based on the maximum log likelihood method and solved efficiently with numerical optimization techniques. Both simulated data mimicking real fMRI time series at multiple noise fractions and real fMRI episodic memory data have been used to evaluate the performance of the proposed method. For simulated data, the area under the receiver operating characteristic curves in detecting group activations increases for the subject and group level multivariate method by 20%, as compared to the univariate method. Results from real fMRI data indicate a significant increase in group-level activation detection, particularly in hippocampus, para-hippocampal area and nearby medial temporal lobe regions with the proposed method.

摘要

基于任务的功能磁共振成像(fMRI)已被广泛用于确定认知任务的基于人群的大脑激活。fMRI 中流行的组水平分析基于一般线性模型,构成单变量方法。然而,由于每个体素的空间协方差结构没有完全考虑在内,因此单变量方法已知特异性下的灵敏度较低。在这项研究中,引入了一种空间约束局部多变量模型,用于组水平分析,以提高给定特异性下的激活检测灵敏度。所提出的模型是基于最大似然方法的多元约束优化问题来制定的,并通过数值优化技术有效地解决。模拟数据模拟了多个噪声分数的真实 fMRI 时间序列,以及真实的 fMRI 情景记忆数据,用于评估所提出方法的性能。对于模拟数据,与单变量方法相比,在检测组激活方面,受试者和组水平多变量方法的受试者工作特征曲线下面积增加了 20%。来自真实 fMRI 数据的结果表明,与提出的方法相比,组水平激活检测显著增加,特别是在海马体、海马旁回和附近的内侧颞叶区域。

相似文献

1
Multivariate group-level analysis for task fMRI data with canonical correlation analysis.
Neuroimage. 2019 Jul 1;194:25-41. doi: 10.1016/j.neuroimage.2019.03.030. Epub 2019 Mar 17.
2
A family of locally constrained CCA models for detecting activation patterns in fMRI.
Neuroimage. 2017 Apr 1;149:63-84. doi: 10.1016/j.neuroimage.2016.12.081. Epub 2016 Dec 29.
3
3D spatially-adaptive canonical correlation analysis: Local and global methods.
Neuroimage. 2018 Apr 1;169:240-255. doi: 10.1016/j.neuroimage.2017.12.025. Epub 2017 Dec 14.
4
A robust deep neural network for denoising task-based fMRI data: An application to working memory and episodic memory.
Med Image Anal. 2020 Feb;60:101622. doi: 10.1016/j.media.2019.101622. Epub 2019 Nov 26.
6
Temporal-spatial mean-shift clustering analysis to improve functional MRI activation detection.
Magn Reson Imaging. 2016 Nov;34(9):1283-1291. doi: 10.1016/j.mri.2016.07.009. Epub 2016 Jul 25.
7
Optimizing the performance of local canonical correlation analysis in fMRI using spatial constraints.
Hum Brain Mapp. 2012 Nov;33(11):2611-26. doi: 10.1002/hbm.21388. Epub 2011 Aug 30.
8
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
Neuroimage. 2008 Oct 15;43(1):44-58. doi: 10.1016/j.neuroimage.2008.06.037. Epub 2008 Jul 11.
9
Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
Magn Reson Imaging. 2009 Feb;27(2):264-78. doi: 10.1016/j.mri.2008.05.021. Epub 2008 Oct 11.
10
Support vector machine learning-based fMRI data group analysis.
Neuroimage. 2007 Jul 15;36(4):1139-51. doi: 10.1016/j.neuroimage.2007.03.072. Epub 2007 Apr 27.

引用本文的文献

1
Brain Network Analysis: A Review on Multivariate Analytical Methods.
Brain Connect. 2023 Mar;13(2):64-79. doi: 10.1089/brain.2022.0007. Epub 2022 Oct 31.
2
Functional Magnetic Resonance Imaging Studies in Sexual Medicine: A Primer.
J Sex Med. 2022 Jul;19(7):1073-1089. doi: 10.1016/j.jsxm.2022.03.217. Epub 2022 Apr 11.
4
A technical review of canonical correlation analysis for neuroscience applications.
Hum Brain Mapp. 2020 Sep;41(13):3807-3833. doi: 10.1002/hbm.25090. Epub 2020 Jun 27.
5
The integration of social and neural synchrony: a case for ecologically valid research using MEG neuroimaging.
Soc Cogn Affect Neurosci. 2021 Jan 18;16(1-2):143-152. doi: 10.1093/scan/nsaa061.

本文引用的文献

1
3D spatially-adaptive canonical correlation analysis: Local and global methods.
Neuroimage. 2018 Apr 1;169:240-255. doi: 10.1016/j.neuroimage.2017.12.025. Epub 2017 Dec 14.
2
A family of locally constrained CCA models for detecting activation patterns in fMRI.
Neuroimage. 2017 Apr 1;149:63-84. doi: 10.1016/j.neuroimage.2016.12.081. Epub 2016 Dec 29.
3
What's in a pattern? Examining the type of signal multivariate analysis uncovers at the group level.
Neuroimage. 2017 Feb 1;146:113-120. doi: 10.1016/j.neuroimage.2016.11.019. Epub 2016 Nov 13.
4
Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4264-73. doi: 10.1073/pnas.1411250111. Epub 2014 Sep 22.
5
Maximum likelihood estimation for second level fMRI data analysis with expectation trust region algorithm.
Magn Reson Imaging. 2014 Feb;32(2):132-49. doi: 10.1016/j.mri.2013.10.007. Epub 2013 Oct 18.
6
Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA.
Neuroimage. 2014 Apr 1;89:345-57. doi: 10.1016/j.neuroimage.2013.11.043. Epub 2013 Dec 1.
7
Optimizing the performance of local canonical correlation analysis in fMRI using spatial constraints.
Hum Brain Mapp. 2012 Nov;33(11):2611-26. doi: 10.1002/hbm.21388. Epub 2011 Aug 30.
8
Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples.
Neuroimage. 2012 Oct 15;63(1):310-9. doi: 10.1016/j.neuroimage.2012.06.026. Epub 2012 Jun 23.
9
Functional and effective connectivity: a review.
Brain Connect. 2011;1(1):13-36. doi: 10.1089/brain.2011.0008.
10
Multivariate pattern analysis of fMRI: the early beginnings.
Neuroimage. 2012 Aug 15;62(2):852-5. doi: 10.1016/j.neuroimage.2012.03.016. Epub 2012 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验