DSouza Adora M, Abidin Anas Z, Leistritz Lutz, Wismüller Axel
Department of Electrical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
J Neurosci Methods. 2017 Aug 1;287:68-79. doi: 10.1016/j.jneumeth.2017.06.007. Epub 2017 Jun 16.
Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction.
We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters.
Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86).
COMPARISON WITH EXISTING METHOD(S): Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem.
Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution.
大规模格兰杰因果关系(lsGC)是一种最近开发的静息态功能磁共振成像(fMRI)连接性分析方法,用于估计多变量体素分辨率连接性。与大多数常用的多变量方法不同,后者通过聚合体素时间序列来建立粗分辨率连接性以避免欠定问题,而lsGC通过纳入嵌入式降维来估计体素分辨率的细粒度连接性。
我们研究了lsGC在真实fMRI模拟中的应用,通过血液动力学响应函数和重复时间(TR)对神经元活动的平滑进行建模,以及对经验性静息态fMRI数据的应用。随后,从两个数据集的lsGC连接性测量中提取功能子网,并进行定量验证。我们还提供了选择lsGC自由参数的指导原则。
结果表明,对于10分钟的fMRI模拟,在TR = 1.5秒时,lsGC能够可靠地恢复潜在的网络结构,受试者工作特征曲线(AUC)下面积为0.93。此外,从上述lsGC网络中恢复了紧密相互作用模块的子网。经验性静息态fMRI数据的结果表明,视觉和运动皮层的恢复与从(i)视觉-运动fMRI刺激任务序列获得的空间图谱(准确率 = 0.76)和(ii)静息态fMRI的独立成分分析(ICA)获得的空间图谱(准确率 = 0.86)密切一致。
与传统格兰杰因果关系方法(AUC = 0.75)相比,lsGC在fMRI模拟中产生了更好的网络恢复效果。此外,它无法从经验性fMRI数据中恢复功能子网,因为由于遇到欠定问题,无法量化体素分辨率连接性。
从fMRI数据中恢复功能网络表明,lsGC在多变量体素分辨率下为静息态fMRI的连接模式提供了有用的见解。