Suppr超能文献

蛋白质相互作用网络中的中心节点在转化生长因子β-1刺激的肾细胞中驱动关键功能。

Central Nodes in Protein Interaction Networks Drive Critical Functions in Transforming Growth Factor Beta-1 Stimulated Kidney Cells.

作者信息

Rabieian Reyhaneh, Abedi Maryam, Gheisari Yousof

机构信息

Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.

Regenerative Medicine Lab, Isfahan Kidney Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.

出版信息

Cell J. 2017 Winter;18(4):514-531. doi: 10.22074/cellj.2016.4718. Epub 2016 Sep 26.

Abstract

OBJECTIVE

Despite the huge efforts, chronic kidney disease (CKD) remains as an unsolved problem in medicine. Many studies have shown a central role for transforming growth factor beta-1 (TGFβ-1) and its downstream signaling cascades in the pathogenesis of CKD. In this study, we have reanalyzed a microarray dataset to recognize critical signaling pathways controlled by TGFβ-1.

MATERIALS AND METHODS

This study is a bioinformatics reanalysis for a microarray data. The GSE23338 dataset was downloaded from the gene expression omnibus (GEO) database which assesses the mRNA expression profile of TGFβ-1 treated human kidney cells after 24 and 48 hours incubation. The protein interaction networks for differentially expressed (DE) genes in both time points were constructed and enriched. In addition, by network topology analysis, genes with high centrality were identified and then pathway enrichment analysis was performed with either the total network genes or with the central nodes.

RESULTS

We found 110 and 170 genes differentially expressed in the time points 24 and 48 hours, respectively. As the genes in each time point had few interactions, the networks were enriched by adding previously known genes interacting with the differentially expressed ones. In terms of degree, betweenness, and closeness centrality parameters 62 and 60 nodes were considered to be central in the enriched networks of 24 hours and 48 hours treatment, respectively. Pathway enrichment analysis with the central nodes was more informative than those with all network nodes or even initial DE genes, revealing key signaling pathways.

CONCLUSION

We here introduced a method for the analysis of microarray data that integrates the expression pattern of genes with their topological properties in protein interaction networks. This holistic novel approach allows extracting knowledge from raw bulk data.

摘要

目的

尽管付出了巨大努力,但慢性肾脏病(CKD)在医学上仍是一个未解决的问题。许多研究表明,转化生长因子β-1(TGFβ-1)及其下游信号级联在CKD发病机制中起核心作用。在本研究中,我们重新分析了一个微阵列数据集,以识别受TGFβ-1控制的关键信号通路。

材料与方法

本研究是对一个微阵列数据的生物信息学重新分析。从基因表达综合数据库(GEO)下载GSE23338数据集,该数据集评估了TGFβ-1处理的人肾细胞在培养24小时和48小时后的mRNA表达谱。构建并富集了两个时间点差异表达(DE)基因的蛋白质相互作用网络。此外,通过网络拓扑分析,识别出具有高中介中心性的基因,然后用整个网络基因或中心节点进行通路富集分析。

结果

我们分别在24小时和48小时的时间点发现了110个和170个差异表达基因。由于每个时间点的基因相互作用较少,通过添加与差异表达基因相互作用的已知基因来富集网络。就度、介数和接近中心性参数而言,在24小时和48小时处理的富集网络中,分别有62个和60个节点被认为是中心节点。用中心节点进行通路富集分析比用所有网络节点甚至初始差异表达基因更具信息性,揭示了关键信号通路。

结论

我们在此介绍了一种分析微阵列数据的方法,该方法将基因的表达模式与其在蛋白质相互作用网络中的拓扑特性相结合。这种全新的整体方法能够从原始大量数据中提取知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5358/5086330/8b0e868b3ae8/Cell-J-18-514-g01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验