College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China.
Angew Chem Int Ed Engl. 2017 Feb 1;56(6):1600-1604. doi: 10.1002/anie.201610708. Epub 2017 Jan 3.
As a remarkable class of plasmonic materials, two dimensional (2D) semiconductor compounds have attracted attention owing to their controlled manipulation of plasmon resonances in the visible light spectrum, which outperforms conventional noble metals. However, tuning of plasmonic resonances for 2D semiconductors remains challenging. Herein, we design a novel method to obtain amorphous molybdenum oxide (MoO ) nanosheets, in which it combines the oxidation of MoS and subsequent supercritical CO -treatment, which is a crucial step for the achievement of amorphous structure of MoO . Upon illumination, hydrogen-doped MoO exhibits tuned surface plasmon resonances in the visible and near-IR regions. Moreover, a unique behavior of the amorphous MoO nanosheets has been found in an optical biosensing system; there is an optimum plasmon resonance after incubation with different BSA concentrations, suggesting a tunable plasmonic device in the near future.
作为一类显著的等离子体材料,二维(2D)半导体化合物由于能够在可见光范围内控制等离子体共振而受到关注,其性能优于传统的贵金属。然而,对于 2D 半导体材料,等离子体共振的调谐仍然具有挑战性。在此,我们设计了一种获得非晶态氧化钼(MoO )纳米片的新方法,其中包括 MoS 的氧化和随后的超临界 CO 处理,这是获得 MoO 非晶态结构的关键步骤。光照下,掺氢 MoO 在可见和近红外区域表现出可调谐的表面等离子体共振。此外,在光学生物传感系统中发现了非晶态 MoO 纳米片的独特行为;在与不同 BSA 浓度孵育后存在最佳等离子体共振,这表明在不久的将来可能会有一个可调谐的等离子体器件。