Li Juan, Xu Xiaohao, Huang Baibiao, Lou Zaizhu, Li Baojun
Institute of Nanophotonics, Jinan University, Guangzhou 511443, China.
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
ACS Appl Mater Interfaces. 2021 Mar 3;13(8):10047-10053. doi: 10.1021/acsami.0c21401. Epub 2021 Feb 22.
Low-cost and abundant reserved nonmetallic plasmonic materials have been regarded as a promising substitute of noble metals for photocatalysis and surface-enhanced Raman scattering (SERS). In this paper, a MoS/MoO heterostructure was synthesized by light-induced in situ partial oxidation of MoS nanosheets, exhibiting strong surface plasmon resonance (SPR) in a vis-near-infrared (NIR) region. Continuously plasmon-induced hot electrons boost CO reduction to CO due to efficient photoelectron injection from MoS to MoO. Under UV-vis-NIR irradiation, the CO generation rate reached 32.4 μmol g h with a selectivity of 94.1%, which was much higher than that of single MoS or MoO. Furthermore, the plasmonic MoS/MoO heterostructure exhibits superior SERS performance for sensitive rhodamine 6G detection (10 M) with an enhancement factor of ∼10 because of the synergy between SPR and charge transfer effect. This work provides one novel mild synthetization of a plasmonic heterostructure and demonstrates its potential in plasmon-enhanced CO reduction and SERS detection.
低成本且储量丰富的非金属等离子体材料被视为光催化和表面增强拉曼散射(SERS)中贵金属的一种有前途的替代品。本文通过光诱导原位部分氧化MoS纳米片合成了MoS/MoO异质结构,其在可见-近红外(NIR)区域表现出强烈的表面等离子体共振(SPR)。连续的等离子体诱导热电子由于从MoS到MoO的有效光电子注入而促进了CO还原为CO。在紫外-可见-近红外照射下,CO生成速率达到32.4 μmol g⁻¹ h⁻¹,选择性为94.1%,远高于单一的MoS或MoO。此外,由于SPR和电荷转移效应之间的协同作用,等离子体MoS/MoO异质结构对罗丹明6G(10⁻⁸ M)检测表现出优异的SERS性能,增强因子约为10⁵。这项工作提供了一种新型的温和合成等离子体异质结构的方法,并展示了其在等离子体增强CO还原和SERS检测中的潜力。