Suppr超能文献

miRSig:一种基于共识的网络推断方法,用于识别泛癌 miRNA-miRNA 相互作用特征。

miRsig: a consensus-based network inference methodology to identify pan-cancer miRNA-miRNA interaction signatures.

机构信息

Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia,USA.

Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, West Bengal, India.

出版信息

Sci Rep. 2017 Jan 3;7:39684. doi: 10.1038/srep39684.

Abstract

Decoding the patterns of miRNA regulation in diseases are important to properly realize its potential in diagnostic, prog- nostic, and therapeutic applications. Only a handful of studies computationally predict possible miRNA-miRNA interactions; hence, such interactions require a thorough investigation to understand their role in disease progression. In this paper, we design a novel computational pipeline to predict the common signature/core sets of miRNA-miRNA interactions for different diseases using network inference algorithms on the miRNA-disease expression profiles; the individual predictions of these algorithms were then merged using a consensus-based approach to predict miRNA-miRNA associations. We next selected the miRNA-miRNA associations across particular diseases to generate the corresponding disease-specific miRNA-interaction networks. Next, graph intersection analysis was performed on these networks for multiple diseases to identify the common signature/core sets of miRNA interactions. We applied this pipeline to identify the common signature of miRNA-miRNA inter- actions for cancers. The identified signatures when validated using a manual literature search from PubMed Central and the PhenomiR database, show strong relevance with the respective cancers, providing an indirect proof of the high accuracy of our methodology. We developed miRsig, an online tool for analysis and visualization of the disease-specific signature/core miRNA-miRNA interactions, available at: http://bnet.egr.vcu.edu/miRsig.

摘要

解析 miRNA 调控模式在疾病中的作用对于充分发挥其在诊断、预后和治疗应用中的潜力非常重要。只有少数研究通过计算预测可能的 miRNA-mRNA 相互作用;因此,需要对这些相互作用进行深入研究,以了解它们在疾病进展中的作用。在本文中,我们设计了一种新的计算流程,使用 miRNA 疾病表达谱上的网络推断算法来预测不同疾病中 miRNA-mRNA 相互作用的常见特征/核心集;然后使用基于共识的方法合并这些算法的个体预测,以预测 miRNA-mRNA 关联。接下来,我们选择特定疾病之间的 miRNA-mRNA 关联,以生成相应的疾病特异性 miRNA 相互作用网络。接下来,对这些网络进行图交集分析,以识别 miRNA 相互作用的常见特征/核心集。我们将该流程应用于识别癌症中 miRNA-mRNA 相互作用的常见特征。使用来自 PubMed Central 和 PhenomiR 数据库的手动文献搜索对鉴定的特征进行验证,与相应的癌症具有很强的相关性,为我们方法的高精度提供了间接证据。我们开发了 miRsig,这是一个用于分析和可视化疾病特异性特征/核心 miRNA-mRNA 相互作用的在线工具,可在以下网址获得:http://bnet.egr.vcu.edu/miRsig。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349e/5206712/3c16325cde9a/srep39684-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验