Monge-Palacios M, Rafatijo Homayoon
Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211-7600, USA.
Phys Chem Chem Phys. 2017 Jan 18;19(3):2175-2185. doi: 10.1039/c6cp07029a.
We have investigated the role of termolecular reactions in the early chemistry of hydrogen combustion. We performed molecular chemical dynamics simulations using ReaxFF in LAMMPS to identify potential initial reactions for a 1 : 4 mixture of H : O in the NVT ensemble at density 276.3 kg m and ∼3000 K (∼4000 atm) and ∼4000 K (∼5000 atm), and then characterized the saddle points for those reactions using ab initio methods: CCSD(T) = FC/cc-pVTZ//MP2/6-31G, CCSD(T) = FULL/aug-cc-pVTZ//CCSD = FC/cc-pVTZ and CASSCF MP2/6-31G//MP2/6-31G. The main initial reaction is H + O → H + HO, frequently occurring in the presence of a second O as a third body; that is, 2O + H → H + HO + O. The second most frequent reaction is 2O + H → 2HO. We found three saddle points on the triplet PES of these termolecular reactions: one for 2O + H → H + HO + O and two for 2O + H → 2HO. In the latter case, one has a symmetric structure consistent with simultaneous formation of two HO and the other corresponds to a bimolecular reaction between O and H that is "interrupted" by a second O before going to completion. The classical barrier height of the symmetric saddle point for 2O + H → 2HO is 49.8 kcal mol. The barrier to H + O → H + HO is 58.9 kcal mol. The termolecular reaction will be competitive with H + O → H + HO only at sufficiently high pressures.
我们研究了三分子反应在氢气燃烧早期化学过程中的作用。我们在LAMMPS中使用ReaxFF进行了分子化学动力学模拟,以确定在NVT系综中,密度为276.3 kg/m³、温度约为3000 K(约4000 atm)和4000 K(约5000 atm)的H:O为1:4混合物的潜在初始反应,然后使用从头算方法表征这些反应的鞍点:CCSD(T)=FC/cc-pVTZ//MP2/6-31G、CCSD(T)=FULL/aug-cc-pVTZ//CCSD=FC/cc-pVTZ和CASSCF MP2/6-31G//MP2/6-31G。主要的初始反应是H + O → H + HO,在有第二个O作为第三体存在时频繁发生;即2O + H → H + HO + O。第二频繁的反应是2O + H → 2HO。我们在这些三分子反应的三重态势能面上发现了三个鞍点:一个对应2O + H → H + HO + O,两个对应2O + H → 2HO。在后一种情况下,一个具有与同时形成两个HO一致的对称结构,另一个对应于O和H之间的双分子反应,在反应完成前被第二个O“中断”。2O + H → 2HO的对称鞍点的经典势垒高度为49.8 kcal/mol。H + O → H + HO的势垒为58.9 kcal/mol。三分子反应仅在足够高的压力下才会与H + O → H + HO竞争。