Peñaloza Juan P, Márquez-Miranda Valeria, Cabaña-Brunod Mauricio, Reyes-Ramírez Rodrigo, Llancalahuen Felipe M, Vilos Cristian, Maldonado-Biermann Fernanda, Velásquez Luis A, Fuentes Juan A, González-Nilo Fernando D, Rodríguez-Díaz Maité, Otero Carolina
Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile.
Escuela de Bioquímica, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
J Nanobiotechnology. 2017 Jan 3;15(1):1. doi: 10.1186/s12951-016-0241-6.
Nanotechnology is a science that involves imaging, measurement, modeling and a manipulation of matter at the nanometric scale. One application of this technology is drug delivery systems based on nanoparticles obtained from natural or synthetic sources. An example of these systems is synthetized from poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which is a biodegradable, biocompatible and a low production cost polymer. The aim of this work was to investigate the uptake mechanism of PHBV nanoparticles in two different epithelial cell lines (HeLa and SKOV-3).
As a first step, we characterized size, shape and surface charge of nanoparticles using dynamic light scattering and transmission electron microscopy. Intracellular incorporation was evaluated through flow cytometry and fluorescence microscopy using intracellular markers. We concluded that cellular uptake mechanism is carried out in a time, concentration and energy dependent way. Our results showed that nanoparticle uptake displays a cell-specific pattern, since we have observed different colocalization in two different cell lines. In HeLa (Cervical cancer cells) this process may occur via classical endocytosis pathway and some internalization via caveolin-dependent was also observed, whereas in SKOV-3 (Ovarian cancer cells) these patterns were not observed. Rearrangement of actin filaments showed differential nanoparticle internalization patterns for HeLa and SKOV-3. Additionally, final fate of nanoparticles was also determined, showing that in both cell lines, nanoparticles ended up in lysosomes but at different times, where they are finally degraded, thereby releasing their contents.
Our results, provide novel insight about PHBV nanoparticles internalization suggesting that for develop a proper drug delivery system is critical understand the uptake mechanism.
纳米技术是一门涉及在纳米尺度上对物质进行成像、测量、建模和操纵的科学。该技术的一个应用是基于从天然或合成来源获得的纳米颗粒的药物递送系统。这些系统的一个例子是由聚(3-羟基丁酸酯-co-3-羟基戊酸酯)合成的,它是一种可生物降解、生物相容且生产成本低的聚合物。这项工作的目的是研究聚(3-羟基丁酸酯-co-3-羟基戊酸酯)纳米颗粒在两种不同上皮细胞系(HeLa和SKOV-3)中的摄取机制。
作为第一步,我们使用动态光散射和透射电子显微镜对纳米颗粒的大小、形状和表面电荷进行了表征。通过流式细胞术和使用细胞内标记物的荧光显微镜评估细胞内掺入情况。我们得出结论,细胞摄取机制是以时间、浓度和能量依赖的方式进行的。我们的结果表明,纳米颗粒摄取呈现细胞特异性模式,因为我们在两种不同的细胞系中观察到了不同的共定位情况。在HeLa(宫颈癌细胞)中,这个过程可能通过经典的内吞途径发生,并且还观察到一些通过小窝蛋白依赖性的内化,而在SKOV-3(卵巢癌细胞)中没有观察到这些模式。肌动蛋白丝的重排显示了HeLa和SKOV-3不同的纳米颗粒内化模式。此外,还确定了纳米颗粒的最终命运,表明在两种细胞系中,纳米颗粒最终都进入溶酶体,但时间不同,在那里它们最终被降解,从而释放其内容物。
我们的结果为聚(3-羟基丁酸酯-co-3-羟基戊酸酯)纳米颗粒的内化提供了新的见解,表明对于开发合适的药物递送系统,了解摄取机制至关重要。