Nshogozabahizi Jean Claude, Dench Jonathan, Aris-Brosou Stéphane
Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada.
Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
Genetics. 2017 Jan;205(1):409-420. doi: 10.1534/genetics.116.193979. Epub 2016 Nov 9.
In systems biology and genomics, epistasis characterizes the impact that a substitution at a particular location in a genome can have on a substitution at another location. This phenomenon is often implicated in the evolution of drug resistance or to explain why particular "disease-causing" mutations do not have the same outcome in all individuals. Hence, uncovering these mutations and their locations in a genome is a central question in biology. However, epistasis is notoriously difficult to uncover, especially in fast-evolving organisms. Here, we present a novel statistical approach that replies on a model developed in ecology and that we adapt to analyze genetic data in fast-evolving systems such as the influenza A virus. We validate the approach using a two-pronged strategy: extensive simulations demonstrate a low-to-moderate sensitivity with excellent specificity and precision, while analyses of experimentally validated data recover known interactions, including in a eukaryotic system. We further evaluate the ability of our approach to detect correlated evolution during antigenic shifts or at the emergence of drug resistance. We show that in all cases, correlated evolution is prevalent in influenza A viruses, involving many pairs of sites linked together in chains; a hallmark of historical contingency. Strikingly, interacting sites are separated by large physical distances, which entails either long-range conformational changes or functional tradeoffs, for which we find support with the emergence of drug resistance. Our work paves a new way for the unbiased detection of epistasis in a wide range of organisms by performing whole-genome scans.
在系统生物学和基因组学中,上位性描述了基因组中特定位置的一个替换对另一个位置的替换可能产生的影响。这种现象常常与耐药性的进化有关,或者用于解释为什么特定的“致病”突变在所有个体中不会产生相同的结果。因此,在基因组中发现这些突变及其位置是生物学中的一个核心问题。然而,上位性 notoriously 难以发现,尤其是在快速进化的生物体中。在这里,我们提出了一种新颖的统计方法,该方法依赖于在生态学中开发的一个模型,并且我们对其进行了调整,以分析快速进化系统(如甲型流感病毒)中的遗传数据。我们使用双管齐下的策略验证了该方法:广泛的模拟表明其敏感性低至中等,但具有出色的特异性和精确性,而对经过实验验证的数据进行分析则恢复了已知的相互作用,包括在一个真核系统中的相互作用。我们进一步评估了我们的方法在抗原转变或耐药性出现期间检测相关进化的能力。我们表明,在所有情况下,相关进化在甲型流感病毒中普遍存在,涉及许多成对的位点以链状连接在一起;这是历史偶然性的一个标志。引人注目的是,相互作用的位点在物理上被大距离隔开,这要么需要长距离的构象变化,要么需要功能权衡,我们在耐药性出现时找到了对此的支持。我们的工作通过进行全基因组扫描为在广泛生物体中无偏检测上位性开辟了一条新途径。