Suppr超能文献

高尔基体重新组装-堆叠蛋白GRASP55与高尔基体蛋白45相互作用的结构基础

Structural Basis for the Interaction between Golgi Reassembly-stacking Protein GRASP55 and Golgin45.

作者信息

Zhao Jianfeng, Li Bowen, Huang Xiaochen, Morelli Xavier, Shi Ning

机构信息

From the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China and.

the Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France.

出版信息

J Biol Chem. 2017 Feb 17;292(7):2956-2965. doi: 10.1074/jbc.M116.765990. Epub 2017 Jan 3.

Abstract

Golgin45 is required for normal Golgi structure and the transportation of protein from the ER. It forms a specific complex with GRASP55 Little is known regarding the molecular details of this interaction and its structural role in stacking of the Golgi complex. Here, we present the crystal structure of the GRASP domains of GRASP55 in complex with the Golgin45 C-terminal peptide, determined at 1.33 Å resolution. Similar to the structure of GRASP65 bound to GM130 reported recently, this structure reveals more than one interacting site and involves both PDZ1 and PDZ2 domains of the GRASP simultaneously. The C-terminal peptides of Golgin45 and GM130 present a conserved PDZ domain binding motif sequence and recognize the canonical PDZ-peptide binding groove of the PDZ1 domains of GRASP55 and GRASP65. A main difference in this recognition process resides in a structural rearrangement of GRASP65-GM130 that does not occur for the GRASP55-Golgin45 complex. The binding site at the cleft between the PDZ1 and PDZ2 domains of GRASP65 is dominated by hydrophobic interactions with GM130 that are not observed in the GRASP55-Golgin45 complex. In addition, a unique zinc finger structure is revealed in the GRASP55-Golgin45 complex crystal structure. Mutagenesis experiments support these structural observations and demonstrate that two of these sites are required to form a stable complex. Finally, a novel Golgi stacking model is proposed according to these structural findings.

摘要

高尔基体蛋白45(Golgin45)对于正常的高尔基体结构以及蛋白质从内质网的运输是必需的。它与GRASP55形成一种特定的复合物。关于这种相互作用的分子细节及其在高尔基体复合物堆叠中的结构作用,人们了解甚少。在这里,我们展示了GRASP55的GRASP结构域与高尔基体蛋白45 C末端肽复合物的晶体结构,分辨率为1.33 Å。与最近报道的GRASP65与GM130结合的结构相似,该结构揭示了不止一个相互作用位点,并且同时涉及GRASP的PDZ1和PDZ2结构域。高尔基体蛋白45和GM130的C末端肽呈现出保守的PDZ结构域结合基序序列,并识别GRASP55和GRASP65的PDZ1结构域的典型PDZ - 肽结合凹槽。这种识别过程的一个主要差异在于GRASP65 - GM130发生了结构重排,而GRASP55 - 高尔基体蛋白45复合物没有。GRASP65的PDZ1和PDZ2结构域之间裂隙处的结合位点主要由与GM130的疏水相互作用主导,而在GRASP55 - 高尔基体蛋白45复合物中未观察到这种相互作用。此外,在GRASP55 - 高尔基体蛋白45复合物晶体结构中揭示了一种独特的锌指结构。诱变实验支持了这些结构观察结果,并表明形成稳定复合物需要其中两个位点。最后,根据这些结构发现提出了一种新的高尔基体堆叠模型。

相似文献

1
Structural Basis for the Interaction between Golgi Reassembly-stacking Protein GRASP55 and Golgin45.
J Biol Chem. 2017 Feb 17;292(7):2956-2965. doi: 10.1074/jbc.M116.765990. Epub 2017 Jan 3.
2
Structural basis for the interaction between the Golgi reassembly-stacking protein GRASP65 and the Golgi matrix protein GM130.
J Biol Chem. 2015 Oct 30;290(44):26373-82. doi: 10.1074/jbc.M115.657940. Epub 2015 Sep 11.
3
Structural insight into Golgi membrane stacking by GRASP65 and GRASP55 proteins.
J Biol Chem. 2013 Sep 27;288(39):28418-27. doi: 10.1074/jbc.M113.478024. Epub 2013 Aug 12.
5
Golgin45-Syntaxin5 Interaction Contributes to Structural Integrity of the Golgi Stack.
Sci Rep. 2019 Aug 28;9(1):12465. doi: 10.1038/s41598-019-48875-x.
6
ACBD3 functions as a scaffold to organize the Golgi stacking proteins and a Rab33b-GAP.
FEBS Lett. 2017 Sep;591(18):2793-2802. doi: 10.1002/1873-3468.12780. Epub 2017 Aug 21.
7
Structure of the membrane-tethering GRASP domain reveals a unique PDZ ligand interaction that mediates Golgi biogenesis.
J Biol Chem. 2011 Jun 10;286(23):20125-9. doi: 10.1074/jbc.C111.245324. Epub 2011 Apr 22.
9
GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking.
J Cell Biol. 2010 Jan 25;188(2):237-51. doi: 10.1083/jcb.200907132. Epub 2010 Jan 18.
10
Biophysical characterization of intrinsically disordered human Golgi matrix protein GRASP65.
Int J Biol Macromol. 2020 Nov 1;162:1982-1993. doi: 10.1016/j.ijbiomac.2020.08.126. Epub 2020 Aug 18.

引用本文的文献

1
The role of Golgi complex proteins in cell division and consequences of their dysregulation.
Front Cell Dev Biol. 2025 Jan 7;12:1513472. doi: 10.3389/fcell.2024.1513472. eCollection 2024.
2
Golgi defect as a major contributor to lysosomal dysfunction.
Front Cell Dev Biol. 2024 Apr 24;12:1386149. doi: 10.3389/fcell.2024.1386149. eCollection 2024.
3
Structural Organization and Function of the Golgi Ribbon During Cell Division.
Front Cell Dev Biol. 2022 Jun 24;10:925228. doi: 10.3389/fcell.2022.925228. eCollection 2022.
5
GRASP55 regulates intra-Golgi localization of glycosylation enzymes to control glycosphingolipid biosynthesis.
EMBO J. 2021 Oct 18;40(20):e107766. doi: 10.15252/embj.2021107766. Epub 2021 Sep 13.
7
8
PI4KIIIβ is a therapeutic target in chromosome 1q-amplified lung adenocarcinoma.
Sci Transl Med. 2020 Jan 22;12(527). doi: 10.1126/scitranslmed.aax3772.
9
Nucleation-dependent amyloid fibrillation of human GRASP55 in aqueous solution.
Eur Biophys J. 2020 Mar;49(2):133-143. doi: 10.1007/s00249-019-01419-7. Epub 2020 Jan 8.
10
Golgi Structure and Function in Health, Stress, and Diseases.
Results Probl Cell Differ. 2019;67:441-485. doi: 10.1007/978-3-030-23173-6_19.

本文引用的文献

1
Monomerization and ER Relocalization of GRASP Is a Requisite for Unconventional Secretion of CFTR.
Traffic. 2016 Jul;17(7):733-53. doi: 10.1111/tra.12403. Epub 2016 May 18.
3
GRASP: A Multitasking Tether.
Front Cell Dev Biol. 2016 Jan 26;4:1. doi: 10.3389/fcell.2016.00001. eCollection 2016.
4
GRASPs in Golgi Structure and Function.
Front Cell Dev Biol. 2016 Jan 6;3:84. doi: 10.3389/fcell.2015.00084. eCollection 2015.
5
Structural basis for the interaction between the Golgi reassembly-stacking protein GRASP65 and the Golgi matrix protein GM130.
J Biol Chem. 2015 Oct 30;290(44):26373-82. doi: 10.1074/jbc.M115.657940. Epub 2015 Sep 11.
6
BLZF1 expression is of prognostic significance in hepatocellular carcinoma.
Biochem Biophys Res Commun. 2015 Nov 20;467(3):602-9. doi: 10.1016/j.bbrc.2015.08.119. Epub 2015 Sep 2.
7
CD83 and GRASP55 interact in human dendritic cells.
Biochem Biophys Res Commun. 2015 Mar 27;459(1):42-8. doi: 10.1016/j.bbrc.2015.02.057. Epub 2015 Feb 19.
9
Membrane adhesion dictates Golgi stacking and cisternal morphology.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1849-54. doi: 10.1073/pnas.1323895111. Epub 2014 Jan 21.
10
Structural insight into Golgi membrane stacking by GRASP65 and GRASP55 proteins.
J Biol Chem. 2013 Sep 27;288(39):28418-27. doi: 10.1074/jbc.M113.478024. Epub 2013 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验