Niu Ying, Betzel Gregory T, Yang Xiaocheng, Gui Minzhi, Parke William C, Yi Byongyong, Yu Cedric X
Xcision Medical Systems, LLC, Columbia, MD, United States of America.
Phys Med Biol. 2017 Feb 21;62(4):1480-1500. doi: 10.1088/1361-6560/aa56b7. Epub 2017 Jan 4.
This study introduces a practical four-dimensional (4D) planning scheme of IMAT using 4D computed tomography (4D CT) for planning tumor tracking with dynamic multileaf beam collimation. We assume that patients can breathe regularly, i.e. the same way as during 4D CT with an unchanged period and amplitude, and that the start of 4D-IMAT delivery can be synchronized with a designated respiratory phase. Each control point of the IMAT-delivery process can be associated with an image set of 4D CT at a specified respiratory phase. Target is contoured at each respiratory phase without a motion-induced margin. A 3D-IMAT plan is first optimized on a reference-phase image set of 4D CT. Then, based on the projections of the planning target volume in the beam's eye view at different respiratory phases, a 4D-IMAT plan is generated by transforming the segments of the optimized 3D plan by using a direct aperture deformation method. Compensation for both translational and deformable tumor motion is accomplished, and the smooth delivery of the transformed plan is ensured by forcing connectivity between adjacent angles (control points). It is envisioned that the resultant plans can be delivered accurately using the dose rate regulated tracking method which handles breathing irregularities (Yi et al 2008 Med. Phys. 35 3955-62).This planning process is straightforward and only adds a small step to current clinical 3D planning practice. Our 4D planning scheme was tested on three cases to evaluate dosimetric benefits. The created 4D-IMAT plans showed similar dose distributions as compared with the 3D-IMAT plans on a single static phase, indicating that our method is capable of eliminating the dosimetric effects of breathing induced target motion. Compared to the 3D-IMAT plans with large treatment margins encompassing respiratory motion, our 4D-IMAT plans reduced radiation doses to surrounding normal organs and tissues.
本研究介绍了一种实用的四维(4D)调强弧形断层放疗(IMAT)计划方案,该方案使用四维计算机断层扫描(4D CT)进行动态多叶准直的肿瘤追踪计划。我们假设患者能够规律呼吸,即与4D CT扫描时呼吸方式相同,周期和幅度不变,并且4D-IMAT治疗开始时可与指定的呼吸相位同步。IMAT治疗过程的每个控制点都可与特定呼吸相位的4D CT图像集相关联。在每个呼吸相位对靶区进行轮廓勾画,无需考虑运动引起的边界。首先在4D CT的参考相位图像集上优化三维(3D)-IMAT计划。然后,基于不同呼吸相位射野视观中计划靶区的投影,通过直接孔径变形方法变换优化后的3D计划的射野分段,生成4D-IMAT计划。实现了对肿瘤平移和变形运动的补偿,并通过强制相邻角度(控制点)之间的连接性确保了变换后计划的平稳输送。可以预想,使用处理呼吸不规则性的剂量率调节追踪方法(Yi等人,2008年,《医学物理》35卷,3955 - 3962页)能够准确实施最终计划。该计划过程简单直接,只是在当前临床3D计划实践中增加了一小步。我们的4D计划方案在三个病例上进行了测试,以评估剂量学益处。所创建的4D-IMAT计划与单个静态相位的3D-IMAT计划相比,显示出相似的剂量分布,表明我们的方法能够消除呼吸引起的靶区运动的剂量学影响。与包含呼吸运动的大治疗边界的3D-IMAT计划相比,我们的4D-IMAT计划降低了对周围正常器官和组织的辐射剂量。