Suppr超能文献

利用动态 MRI 进行肿瘤和替代物同步运动追踪,以用于放射治疗计划。

Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning.

机构信息

Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, United States of America.

出版信息

Phys Med Biol. 2018 Jan 11;63(2):025015. doi: 10.1088/1361-6560/aaa20b.

Abstract

Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient's chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.

摘要

呼吸运动导致的肿瘤运动是实现胸部和腹部癌症高精度放射治疗的主要障碍。基于代理的估计和跟踪方法在放射治疗中被广泛应用,但对肿瘤运动的量化相关性的理解有限。在这项研究中,我们提出了一种方法,使用动态 MRI 同时跟踪肺肿瘤和外部代理,以定量评估它们之间的空间相关性,这种方法允许实时采集,而不会暴露于电离辐射。为了捕获肺部和整个肿瘤,在患者的胸部和上腹部放置四个 MRI 兼容的基准点。在矢状方向上进行两种不同类型的采集,包括多切片 2D 电影 MRI 以重建 4D-MRI 和两切片 2D 电影 MRI 以同时跟踪肿瘤和基准点。首先使用身体区域作为呼吸代理并进行分组配准,从多切片 MR 图像重建相位分箱的 4D-MRI。4D-MRI 提供了不同呼吸相位的 3D 模板体积。通过在 4D-MRI 重建中的 3D 肿瘤模板和两切片跟踪数据集的 2D 电影 MRI 之间进行 3D-2D 模板匹配来计算肿瘤的 3D 位置。通过将基准点的 3D 几何模型与 2D 电影 MRI 上的分割进行匹配,来获得外部代理的 3D 轨迹。我们在 10 名肺癌患者中测试了我们的方法。通过相关分析,3D 肿瘤轨迹显示出明显的相位失配和显著的周期间运动变化,而外部代理则不足以捕捉到这种变化。此外,来自不同位置的基准点的代理信号之间存在明显的相位失配。

相似文献

1
Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning.
Phys Med Biol. 2018 Jan 11;63(2):025015. doi: 10.1088/1361-6560/aaa20b.
2
Evaluation of lung tumor motion management in radiation therapy with dynamic MRI.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10135. doi: 10.1117/12.2254676. Epub 2017 Mar 3.
9
Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate.
Int J Radiat Oncol Biol Phys. 2014 Jan 1;88(1):182-8. doi: 10.1016/j.ijrobp.2013.09.026.

引用本文的文献

1
Validating a T1-weighted cine MRI for a 1.5T MR-Linac with temporal resolution appropriate for respiratory motion.
Front Oncol. 2025 Jun 4;15:1575001. doi: 10.3389/fonc.2025.1575001. eCollection 2025.
2
Clinical application of real-time tumor-tracking for stereotactic volumetric modulated arc therapy for liver tumors.
Phys Imaging Radiat Oncol. 2024 Aug 5;31:100623. doi: 10.1016/j.phro.2024.100623. eCollection 2024 Jul.
3
High-speed bioimpedance-based gating system for radiotherapy: Prototype and proof of principle.
J Appl Clin Med Phys. 2024 Oct;25(10):e14491. doi: 10.1002/acm2.14491. Epub 2024 Aug 28.
5
Machine Learning Radiomics Model for External and Internal Respiratory Motion Correlation Prediction in Lung Tumor.
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221143224. doi: 10.1177/15330338221143224.
7
Evaluation of four surface surrogates for modeling lung tumor positions over several fractions in radiotherapy.
J Appl Clin Med Phys. 2021 Sep;22(9):103-112. doi: 10.1002/acm2.13351. Epub 2021 Jul 14.
8
Developments in radiation techniques for thoracic malignancies.
Eur Respir Rev. 2021 May 5;30(160). doi: 10.1183/16000617.0224-2020. Print 2021 Jun 30.
9
Comparison of four dimensional computed tomography and magnetic resonance imaging in abdominal radiotherapy planning.
Phys Imaging Radiat Oncol. 2018 Oct 6;7:70-75. doi: 10.1016/j.phro.2018.09.004. eCollection 2018 Jul.
10
Investigation of tumor and vessel motion correlation in the liver.
J Appl Clin Med Phys. 2020 Aug;21(8):183-190. doi: 10.1002/acm2.12943. Epub 2020 Jun 13.

本文引用的文献

1
Deformable registration of CT and cone-beam CT with local intensity matching.
Phys Med Biol. 2017 Feb 7;62(3):927-947. doi: 10.1088/1361-6560/aa4f6d. Epub 2017 Jan 11.
2
Planning 4D intensity-modulated arc therapy for tumor tracking with a multileaf collimator.
Phys Med Biol. 2017 Feb 21;62(4):1480-1500. doi: 10.1088/1361-6560/aa56b7. Epub 2017 Jan 4.
3
Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy.
Phys Med Biol. 2016 Jul 21;61(14):5335-55. doi: 10.1088/0031-9155/61/14/5335. Epub 2016 Jun 30.
4
Audiovisual Biofeedback Improves Cine-Magnetic Resonance Imaging Measured Lung Tumor Motion Consistency.
Int J Radiat Oncol Biol Phys. 2016 Mar 1;94(3):628-36. doi: 10.1016/j.ijrobp.2015.11.017. Epub 2015 Nov 18.
5
Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI.
Phys Med Biol. 2016 Jan 21;61(2):872-87. doi: 10.1088/0031-9155/61/2/872. Epub 2016 Jan 7.
6
Liver 4DMRI: A retrospective image-based sorting method.
Med Phys. 2015 Aug;42(8):4814-21. doi: 10.1118/1.4927252.
7
Magnetic resonance imaging-guided versus surrogate-based motion tracking in liver radiation therapy: a prospective comparative study.
Int J Radiat Oncol Biol Phys. 2015 Mar 15;91(4):840-8. doi: 10.1016/j.ijrobp.2014.12.013.
9
From label fusion to correspondence fusion: a new approach to unbiased groupwise registration.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2012:956-963. doi: 10.1109/CVPR.2012.6247771.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验