Sikeler Christoph, Kempter Susanne, Sekulic Ivan, Burger Sven, Liedl Tim
Ludwig-Maximilians-Universität München, 80539 Munich, Germany.
Zuse Institute Berlin, 14195 Berlin, Germany.
J Phys Chem C Nanomater Interfaces. 2025 Feb 27;129(10):5116-5121. doi: 10.1021/acs.jpcc.4c08768. eCollection 2025 Mar 13.
Periodic lattices of high refractive index materials manipulate light in exceptional manners. Resulting remarkable properties range from photonic band gaps to chiral active matter, which critically depend on parameters of crystal lattices such as the unit cell, lattice type, and periodicity. In self-assembled materials, the lattice properties are inherited by the geometry and size of the macromolecules or colloidal particles assembling the unit cell. DNA origami allows for excellent control over the size and shape of assembled macromolecules while simultaneously allowing control over the interaction between them and ultimately the crystal's structure. Here, we present the assembly of chiral, rhombohedral crystals in one, two, and three dimensions built by a DNA origami tensegrity triangle. Subsequent modification of the lattice with gold nanorods converts the lattices into chiral plasmonic metamaterials active in the visible and near-infrared spectral range. We demonstrate their chiral activity and corroborate the experimental results with simulated data.
高折射率材料的周期性晶格以特殊方式操纵光。由此产生的显著特性范围从光子带隙到手性活性物质,这严重依赖于晶格参数,如晶胞、晶格类型和周期性。在自组装材料中,晶格特性由组装晶胞的大分子或胶体颗粒的几何形状和尺寸继承。DNA折纸术允许对组装大分子的大小和形状进行出色控制,同时允许控制它们之间的相互作用以及最终晶体的结构。在这里,我们展示了由DNA折纸张拉整体三角形构建的一维、二维和三维手性菱面体晶体的组装。随后用金纳米棒对晶格进行修饰,将晶格转化为在可见光和近红外光谱范围内具有活性的手性等离子体超材料。我们展示了它们的手性活性,并用模拟数据证实了实验结果。