Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.
Nanoscale. 2017 Jan 19;9(3):1244-1256. doi: 10.1039/c6nr07697a.
The mechanical properties of collagen fibrils depend on the amount and the distribution of water molecules within the fibrils. Here, we use atomic force microscopy (AFM) to study the effect of hydration on the viscoelastic properties of reconstituted type I collagen fibrils in air with controlled relative humidity. With the same AFM tip, we investigate the same area of a collagen fibril with two different force spectroscopy methods: force-distance (FD) and amplitude-phase-distance (APD) measurements. This allows us to separate the contributions of the fibril's viscoelastic response and the capillary force to the tip-sample interaction. A water bridge forms between the tip apex and the surface, causing an attractive capillary force, which is the main contribution to the energy dissipated from the tip to the specimen in dynamic AFM. The force hysteresis in the FD measurements and the tip indentation of only 2 nm in the APD measurements show that the hydrated collagen fibril is a viscoelastic solid. The mechanical properties of the gap regions and the overlap regions in the fibril's D-band pattern differ only in the top 2 nm but not in the fibril's bulk. We attribute this to the reduced number of intermolecular crosslinks in the reconstituted collagen fibril. The presented methodology allows the mechanical surface properties of hydrated collagenous tissues and biomaterials to be studied with unprecedented detail on the nanometer scale.
胶原原纤维的力学性能取决于原纤维内水分子的数量和分布。在这里,我们使用原子力显微镜(AFM)研究了在控制相对湿度的条件下,水合作用对空气中重组 I 型胶原原纤维粘弹性的影响。使用相同的 AFM 探针,我们用两种不同的力谱测量方法(力-距离(FD)和振幅-相位-距离(APD)测量)研究了胶原原纤维的同一区域。这使我们能够分离原纤维粘弹性响应和毛细力对针尖-样品相互作用的贡献。针尖尖端和表面之间形成水桥,产生吸引力的毛细力,这是动态 AFM 中从针尖向样品耗散能量的主要贡献。FD 测量中的力滞后和 APD 测量中仅 2nm 的针尖压痕表明,水合胶原原纤维是一种粘弹性固体。原纤维 D 带图案中的间隙区域和重叠区域的机械性能仅在顶部 2nm 处存在差异,但在原纤维的主体部分不存在差异。我们将这归因于重组胶原原纤维中分子间交联数量的减少。所提出的方法允许以纳米级的空前细节研究水合胶原组织和生物材料的机械表面性能。