Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg and Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany.
Anal Chem. 2020 Jul 7;92(13):8741-8749. doi: 10.1021/acs.analchem.9b05582. Epub 2020 Jun 16.
Connective tissue displays a large compositional and structural complexity that involves multiple length scales. In particular, on the molecular and the nanometer level, the elementary processes that determine the biomechanics of collagen fibrils in connective tissues are still poorly understood. Here, we use atomic force microscopy (AFM) to determine the three-dimensional (3D) depth profiles of the local nanomechanical properties of collagen fibrils and their embedding interfibrillar matrix in native (unfixed), hydrated Achilles tendon of sheep and chickens. AFM imaging in air with controlled humidity preserves the tissue's water content, allowing the assembly of collagen fibrils to be imaged in high resolution beneath an approximately 5-10 nm thick layer of the fluid components of the interfibrillar matrix. We collect pointwise force-distance (FD) data and amplitude-phase-distance (APD) data, from which we construct 3D depth profiles of the local tip-sample interaction forces. The 3D images reveal the nanomechanical morphology of unfixed, hydrated collagen fibrils in native tendon with a 0.1 nm depth resolution and a 10 nm lateral resolution. We observe a diversity in the nanomechanical properties among individual collagen fibrils in their adhesive and in their repulsive, viscoelastic mechanical response as well as among the contact points between adjacent collagen fibrils. This sheds new light on the role of interfibrillar bonds and the mechanical properties of the interfibrillar matrix in the biomechanics of tendon.
结缔组织表现出很大的组成和结构复杂性,涉及多个长度尺度。特别是在分子和纳米尺度上,决定结缔组织中胶原原纤维生物力学的基本过程仍未被很好地理解。在这里,我们使用原子力显微镜(AFM)来确定天然(未固定)、水合状态下绵羊和鸡的跟腱中胶原原纤维及其嵌入的纤维间基质的局部纳米力学性质的三维(3D)深度分布。在控制湿度的空气中进行 AFM 成像可以保留组织的含水量,允许在纤维间基质的大约 5-10nm 厚的流体成分层下以高分辨率对胶原原纤维的组装进行成像。我们收集逐点力-距离(FD)数据和振幅-相位-距离(APD)数据,从中构建局部针尖-样品相互作用力的 3D 深度分布。3D 图像以 0.1nm 的深度分辨率和 10nm 的横向分辨率揭示了天然肌腱中未固定、水合胶原原纤维的纳米力学形态。我们观察到,在黏附状态和排斥状态下,以及在相邻胶原原纤维之间的接触点处,单个胶原原纤维之间的纳米力学性质存在多样性。这为纤维间键合和纤维间基质的力学性质在肌腱生物力学中的作用提供了新的认识。