Suppr超能文献

使用半经验量子化学方法预测类药物分子的pK值

Prediction of pK Values for Druglike Molecules Using Semiempirical Quantum Chemical Methods.

作者信息

Jensen Jan H, Swain Christopher J, Olsen Lars

机构信息

Department of Chemistry, University of Copenhagen , 1165 Copenhagen, Denmark.

Cambridge MedChem Consulting , CB22 4RN Cambridge, U.K.

出版信息

J Phys Chem A. 2017 Jan 26;121(3):699-707. doi: 10.1021/acs.jpca.6b10990. Epub 2017 Jan 12.

Abstract

Rapid yet accurate pK prediction for druglike molecules is a key challenge in computational chemistry. This study uses PM6-DH+/COSMO, PM6/COSMO, PM7/COSMO, PM3/COSMO, AM1/COSMO, PM3/SMD, AM1/SMD, and DFTB3/SMD to predict the pK values of 53 amine groups in 48 druglike compounds. The approach uses an isodesmic reaction where the pK value is computed relative to a chemically related reference compound for which the pK value has been measured experimentally or estimated using a standard empirical approach. The AM1- and PM3-based methods perform best with RMSE values of 1.4-1.6 pH units that have uncertainties of ±0.2-0.3 pH units, which make them statistically equivalent. However, for all but PM3/SMD and AM1/SMD the RMSEs are dominated by a single outlier, cefadroxil, caused by proton transfer in the zwitterionic protonation state. If this outlier is removed, the RMSE values for PM3/COSMO and AM1/COSMO drop to 1.0 ± 0.2 and 1.1 ± 0.3, whereas PM3/SMD and AM1/SMD remain at 1.5 ± 0.3 and 1.6 ± 0.3/0.4 pH units, making the COSMO-based predictions statistically better than the SMD-based predictions. For pK calculations where a zwitterionic state is not involved or proton transfer in a zwitterionic state is not observed, PM3/COSMO or AM1/COSMO is the best pK prediction method; otherwise PM3/SMD or AM1/SMD should be used. Thus, fast and relatively accurate pK prediction for 100-1000s of druglike amines is feasible with the current setup and relatively modest computational resources.

摘要

对类药物分子进行快速且准确的pK预测是计算化学中的一项关键挑战。本研究使用PM6-DH+/COSMO、PM6/COSMO、PM7/COSMO、PM3/COSMO、AM1/COSMO、PM3/SMD、AM1/SMD和DFTB3/SMD来预测48种类药物化合物中53个胺基的pK值。该方法采用等键反应,其中pK值是相对于一种化学相关的参考化合物计算得出的,该参考化合物的pK值已通过实验测量或使用标准经验方法估算。基于AM1和PM3的方法表现最佳,均方根误差(RMSE)值为1.4 - 1.6个pH单位,不确定性为±0.2 - 0.3个pH单位,这使得它们在统计学上相当。然而,除了PM3/SMD和AM1/SMD外,所有方法的RMSE均受单个异常值头孢羟氨苄的主导,该异常值是由两性离子质子化状态下的质子转移引起的。如果去除这个异常值,PM3/COSMO和AM1/COSMO的RMSE值降至1.0±0.2和1.1±0.3,而PM3/SMD和AM1/SMD保持在1.5±0.3和1.6±0.3/0.4个pH单位,这使得基于COSMO的预测在统计学上优于基于SMD的预测。对于不涉及两性离子状态或未观察到两性离子状态下质子转移的pK计算,PM3/COSMO或AM1/COSMO是最佳的pK预测方法;否则应使用PM3/SMD或AM1/SMD。因此,使用当前设置和相对适度的计算资源,对成百上千种类药物胺进行快速且相对准确的pK预测是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验