Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany.
J Chem Theory Comput. 2019 Mar 12;15(3):1743-1760. doi: 10.1021/acs.jctc.8b01265. Epub 2019 Feb 27.
We present two new semiempirical quantum-chemical methods with orthogonalization and dispersion corrections: ODM2 and ODM3 (ODM x). They employ the same electronic structure model as the OM2 and OM3 (OM x) methods, respectively. In addition, they include Grimme's dispersion correction D3 with Becke-Johnson damping and three-body corrections E for Axilrod-Teller-Muto dispersion interactions as integral parts. Heats of formation are determined by adding explicitly computed zero-point vibrational energy and thermal corrections, in contrast to standard MNDO-type and OM x methods. We report ODM x parameters for hydrogen, carbon, nitrogen, oxygen, and fluorine that are optimized with regard to a wide range of carefully chosen state-of-the-art reference data. Extensive benchmarks show that the ODM x methods generally perform better than the available MNDO-type and OM x methods for ground-state and excited-state properties, while they describe noncovalent interactions with similar accuracy as OM x methods with a posteriori dispersion corrections.
ODM2 和 ODM3(ODM x)。它们分别采用与 OM2 和 OM3(OM x)方法相同的电子结构模型。此外,它们还包含了格里姆(Grimme)的色散修正 D3,其中包括贝克-约翰逊(Becke-Johnson)阻尼和三体修正 E,用于阿西尔罗特-特勒-穆托(Axilrod-Teller-Muto)色散相互作用的积分部分。形成热是通过显式计算零点振动能和热修正来确定的,与标准 MNDO 型和 OM x 方法不同。我们报告了氢、碳、氮、氧和氟的 ODM x 参数,这些参数是针对广泛选择的最先进的参考数据进行优化的。广泛的基准测试表明,对于基态和激发态性质,ODM x 方法通常比现有的 MNDO 型和 OM x 方法表现更好,而对于非共价相互作用,它们的描述准确性与带有后验色散修正的 OM x 方法相似。