Suppr超能文献

一种用于平面形状渐进中轴的鲁棒划分与征服算法。

A Robust Divide and Conquer Algorithm for Progressive Medial Axes of Planar Shapes.

出版信息

IEEE Trans Vis Comput Graph. 2016 Dec;22(12):2522-2536. doi: 10.1109/TVCG.2015.2511739. Epub 2015 Dec 23.

Abstract

The medial axis is an important shape representation that finds a wide range of applications in shape analysis. For large-scale shapes of high resolution, a progressive medial axis representation that starts with the lowest resolution and gradually adds more details is desired. In this paper, we propose a fast and robust geometric algorithm that computes progressive medial axes of a large-scale planar shape. The key ingredient of our method is a novel structural analysis of merging medial axes of two planar shapes along a shared boundary. Our method is robust by separating the analysis of topological structure from numerical computation. Our method is also fast and we show that the time complexity of merging two medial axes is O(n logn) , where n is the number of total boundary generators, n is strictly smaller than n and behaves as a small constant in all our experiments. Experiments on large-scale polygonal data and comparison with state-of-the-art methods show the efficiency and effectiveness of the proposed method.

摘要

中轴是一种重要的形状表示,在形状分析中有着广泛的应用。对于高分辨率的大规模形状,需要一种从最低分辨率开始并逐渐添加更多细节的渐进中轴表示。本文提出了一种快速而鲁棒的几何算法,用于计算大规模平面形状的渐进中轴。我们方法的关键是一种新颖的沿共享边界合并两个平面形状的中轴的结构分析。通过将拓扑结构的分析与数值计算分离,我们的方法具有鲁棒性。我们的方法也很快,我们表明合并两个中轴的时间复杂度为 O(n logn),其中 n 是总边界生成器的数量,n 严格小于 n,并且在我们所有的实验中表现为一个小常数。对大规模多边形数据的实验和与最先进方法的比较表明了所提出方法的效率和有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验