IEEE Trans Vis Comput Graph. 2016 Dec;22(12):2522-2536. doi: 10.1109/TVCG.2015.2511739. Epub 2015 Dec 23.
The medial axis is an important shape representation that finds a wide range of applications in shape analysis. For large-scale shapes of high resolution, a progressive medial axis representation that starts with the lowest resolution and gradually adds more details is desired. In this paper, we propose a fast and robust geometric algorithm that computes progressive medial axes of a large-scale planar shape. The key ingredient of our method is a novel structural analysis of merging medial axes of two planar shapes along a shared boundary. Our method is robust by separating the analysis of topological structure from numerical computation. Our method is also fast and we show that the time complexity of merging two medial axes is O(n logn) , where n is the number of total boundary generators, n is strictly smaller than n and behaves as a small constant in all our experiments. Experiments on large-scale polygonal data and comparison with state-of-the-art methods show the efficiency and effectiveness of the proposed method.
中轴是一种重要的形状表示,在形状分析中有着广泛的应用。对于高分辨率的大规模形状,需要一种从最低分辨率开始并逐渐添加更多细节的渐进中轴表示。本文提出了一种快速而鲁棒的几何算法,用于计算大规模平面形状的渐进中轴。我们方法的关键是一种新颖的沿共享边界合并两个平面形状的中轴的结构分析。通过将拓扑结构的分析与数值计算分离,我们的方法具有鲁棒性。我们的方法也很快,我们表明合并两个中轴的时间复杂度为 O(n logn),其中 n 是总边界生成器的数量,n 严格小于 n,并且在我们所有的实验中表现为一个小常数。对大规模多边形数据的实验和与最先进方法的比较表明了所提出方法的效率和有效性。