Suppr超能文献

用于计算中轴线的局部正交切割方法及其生物医学应用

LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS.

作者信息

Jiao Xiangmin, Einstein Daniel R, Dyedov Vladimir

机构信息

Dept. of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY.

出版信息

SIAM J Sci Comput. 2010 Mar 1;32(2):947-969. doi: 10.1137/090767170.

Abstract

Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method called local orthogonal cutting (LOC) for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stability and consistency tests. These concepts lend themselves to robust numerical techniques and result in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods.

摘要

中轴曲线在几何建模与分析(如形状匹配)以及生物医学工程(如形态测量学和计算机辅助手术)中有着广泛的应用。中轴曲线的计算在理论分析以及实际效率和可靠性方面都带来了重大挑战。在本文中,我们提出了中轴曲线的定义和分析方法,还描述了一种名为局部正交切割(LOC)的高效且稳健的中轴曲线计算方法。我们的方法基于三个关键概念:将物体局部正交分解为子结构、一个名为曲率内心(ICC)的微分几何概念以及综合稳定性和一致性测试。这些概念适用于稳健的数值技术,并产生一种高效且抗噪声的算法。我们用一些从医学图像中获取的高度复杂、大规模且有噪声的生物医学几何模型(包括肺气道和血管)来说明我们方法的有效性和稳健性。我们还将我们的方法与一些现有方法进行了比较。

相似文献

1
LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS.
SIAM J Sci Comput. 2010 Mar 1;32(2):947-969. doi: 10.1137/090767170.
2
Automatic identification and truncation of boundary outlets in complex imaging-derived biomedical geometries.
Med Biol Eng Comput. 2009 Sep;47(9):989-99. doi: 10.1007/s11517-009-0501-9. Epub 2009 Jun 13.
3
A Robust Divide and Conquer Algorithm for Progressive Medial Axes of Planar Shapes.
IEEE Trans Vis Comput Graph. 2016 Dec;22(12):2522-2536. doi: 10.1109/TVCG.2015.2511739. Epub 2015 Dec 23.
4
Robust 2D and 3D images zero - watermarking using dual Hahn moment invariants and Sine Cosine Algorithm.
Multimed Tools Appl. 2022;81(18):25581-25611. doi: 10.1007/s11042-022-12298-0. Epub 2022 Mar 23.
5
A formal classification of 3D medial axis points and their local geometry.
IEEE Trans Pattern Anal Mach Intell. 2004 Feb;26(2):238-51. doi: 10.1109/TPAMI.2004.1262192.
6
SEG-MAT: 3D Shape Segmentation Using Medial Axis Transform.
IEEE Trans Vis Comput Graph. 2022 Jun;28(6):2430-2444. doi: 10.1109/TVCG.2020.3032566. Epub 2022 May 2.
7
Simultaneous two-view epipolar geometry estimation and motion segmentation by 4D tensor voting.
IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1167-84. doi: 10.1109/TPAMI.2004.72.
8
3D shape-dependent thinning method for trabecular bone characterization.
Med Phys. 2012 Jan;39(1):168-78. doi: 10.1118/1.3664005.
9
A geometric approach to shape from defocus.
IEEE Trans Pattern Anal Mach Intell. 2005 Mar;27(3):406-417. doi: 10.1109/TPAMI.2005.43.

引用本文的文献

1
Computational fluid dynamics modeling of spore deposition in rabbit and human respiratory airways.
J Aerosol Sci. 2016 Sep;99:64-77. doi: 10.1016/j.jaerosci.2016.01.011. Epub 2016 Apr 26.
2
A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling.
J Comput Phys. 2013 Jul;244. doi: 10.1016/j.jcp.2012.10.021.
4
Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human.
Toxicol Sci. 2012 Aug;128(2):500-16. doi: 10.1093/toxsci/kfs168. Epub 2012 May 12.

本文引用的文献

1
An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data.
J Comput Phys. 2009 Feb 20;228(3):619-640. doi: 10.1016/j.jcp.2008.09.030.
2
A scaling law of vascular volume.
Biophys J. 2009 Jan;96(2):347-53. doi: 10.1016/j.bpj.2008.09.039.
3
An automated self-similarity analysis of the pulmonary tree of the Sprague-Dawley rat.
Anat Rec (Hoboken). 2008 Dec;291(12):1628-48. doi: 10.1002/ar.20771.
4
Curve-skeleton extraction using iterative least squares optimization.
IEEE Trans Vis Comput Graph. 2008 Jul-Aug;14(4):926-36. doi: 10.1109/TVCG.2008.38.
5
Validation of image-based method for extraction of coronary morphometry.
Ann Biomed Eng. 2008 Mar;36(3):356-68. doi: 10.1007/s10439-008-9443-x. Epub 2008 Jan 29.
6
Curve-skeleton properties, applications, and algorithms.
IEEE Trans Vis Comput Graph. 2007 May-Jun;13(3):530-548. doi: 10.1109/TVCG.2007.1002.
7
A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree.
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2623-33. doi: 10.1152/ajpheart.00987.2006. Epub 2007 Jan 5.
9
Quantitative models of the rat pulmonary arterial tree morphometry applied to hypoxia-induced arterial remodeling.
J Appl Physiol (1985). 2004 Dec;97(6):2372-84; discussion 2354. doi: 10.1152/japplphysiol.00454.2004. Epub 2004 Aug 27.
10
Snake modeling and distance transform approach to vascular centerline extraction and quantification.
Comput Med Imaging Graph. 2003 Nov-Dec;27(6):503-12. doi: 10.1016/s0895-6111(03)00040-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验