Suppr超能文献

LePrimAlign:基于局部信息熵的蛋白质相互作用网络比对方法,用于预测保守模块。

LePrimAlign: local entropy-based alignment of PPI networks to predict conserved modules.

机构信息

Department of Computer Science, Baylor University, One Bear Place #97141, Waco, 76798, TX, USA.

Bioinformatics Program, Baylor University, One Bear Place #97141, Waco, 76798, TX, USA.

出版信息

BMC Genomics. 2019 Dec 24;20(Suppl 9):964. doi: 10.1186/s12864-019-6271-3.

Abstract

BACKGROUND

Cross-species analysis of protein-protein interaction (PPI) networks provides an effective means of detecting conserved interaction patterns. Identifying such conserved substructures between PPI networks of different species increases our understanding of the principles deriving evolution of cellular organizations and their functions in a system level. In recent years, network alignment techniques have been applied to genome-scale PPI networks to predict evolutionary conserved modules. Although a wide variety of network alignment algorithms have been introduced, developing a scalable local network alignment algorithm with high accuracy is still challenging.

RESULTS

We present a novel pairwise local network alignment algorithm, called LePrimAlign, to predict conserved modules between PPI networks of three different species. The proposed algorithm exploits the results of a pairwise global alignment algorithm with many-to-many node mapping. It also applies the concept of graph entropy to detect initial cluster pairs from two networks. Finally, the initial clusters are expanded to increase the local alignment score that is formulated by a combination of intra-network and inter-network scores. The performance comparison with state-of-the-art approaches demonstrates that the proposed algorithm outperforms in terms of accuracy of identified protein complexes and quality of alignments.

CONCLUSION

The proposed method produces local network alignment of higher accuracy in predicting conserved modules even with large biological networks at a reduced computational cost.

摘要

背景

跨物种蛋白质-蛋白质相互作用(PPI)网络的分析为检测保守的相互作用模式提供了一种有效的手段。在不同物种的 PPI 网络之间识别出这种保守的亚结构,可以增加我们对细胞组织进化原理及其在系统水平上功能的理解。近年来,网络对齐技术已被应用于基因组规模的 PPI 网络,以预测进化保守的模块。尽管已经引入了各种各样的网络对齐算法,但开发具有高精度的可扩展局部网络对齐算法仍然具有挑战性。

结果

我们提出了一种新的成对局部网络对齐算法,称为 LePrimAlign,用于预测三种不同物种的 PPI 网络之间的保守模块。该算法利用了具有多对多节点映射的成对全局对齐算法的结果。它还应用了图熵的概念来从两个网络中检测初始簇对。最后,通过组合内网络和外网络得分,将初始簇扩展以提高局部对齐得分。与最先进方法的性能比较表明,该算法在识别蛋白质复合物的准确性和对齐质量方面表现更好。

结论

该方法在预测保守模块时,即使在计算成本降低的情况下,也能产生更高精度的局部网络对齐。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f4b/6929407/ec93fe9fefb1/12864_2019_6271_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验