Suppr超能文献

具有随机纳米尖峰的光阱介导高灵敏度纳米孔阵列生物传感器

Optical Trap-Mediated High-Sensitivity Nanohole Array Biosensors with Random Nanospikes.

作者信息

Yoshikawa Takayasu, Tamura Mamoru, Tokonami Shiho, Iida Takuya

机构信息

Department of Physical Science, Graduate School of Science and ‡Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.

出版信息

J Phys Chem Lett. 2017 Jan 19;8(2):370-374. doi: 10.1021/acs.jpclett.6b02262. Epub 2017 Jan 6.

Abstract

We clarify an unconventional principle of the light-driven operation of a biosensor for enhanced sensitivity with the help of random nanospikes added to the surface of a nanohole array. Such a system is capable of optically guiding viruses and trapping them in the vicinity of a highly sensitive site by an anomalous light-induced force arising from random-nanospike-modulated extraordinary optical transmission and the plasmonic mirror image in a virus as a dielectric submicron object. In particular, after guiding the viruses near the apex of nanospikes, there are conditions where the spectral peak shift of extraordinary optical transmission can be greatly increased and reach several hundred nanometers in comparison with that of a conventional nanohole array without random nanospikes. These results will allow for the development of a simple, rapid, and highly sensitive virus detection method based on optical trapping with the help of random-nanospike-modulated extraordinary optical transmission, facilitating convenient medical diagnosis and food inspection.

摘要

我们阐明了一种生物传感器光驱动操作的非常规原理,借助添加到纳米孔阵列表面的随机纳米尖峰提高灵敏度。这样的系统能够通过随机纳米尖峰调制的异常光传输和病毒作为介电亚微米物体中的等离子体镜像产生的异常光诱导力,对病毒进行光学引导并将它们捕获在高灵敏度位点附近。特别是,在将病毒引导到纳米尖峰顶端附近后,存在一些条件,与没有随机纳米尖峰的传统纳米孔阵列相比,异常光传输的光谱峰值位移可以大大增加,达到数百纳米。这些结果将有助于开发一种基于随机纳米尖峰调制的异常光传输的光镊技术的简单、快速且高灵敏度的病毒检测方法,便于进行便捷的医学诊断和食品检测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验