Suppr超能文献

使用新型口腔黏膜危险器官对严重急性口腔黏膜炎的正常组织并发症概率(NTCP)建模

Normal Tissue Complication Probability (NTCP) Modelling of Severe Acute Mucositis using a Novel Oral Mucosal Surface Organ at Risk.

作者信息

Dean J A, Welsh L C, Wong K H, Aleksic A, Dunne E, Islam M R, Patel A, Patel P, Petkar I, Phillips I, Sham J, Schick U, Newbold K L, Bhide S A, Harrington K J, Nutting C M, Gulliford S L

机构信息

Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.

Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London, UK.

出版信息

Clin Oncol (R Coll Radiol). 2017 Apr;29(4):263-273. doi: 10.1016/j.clon.2016.12.001. Epub 2017 Jan 3.

Abstract

AIMS

A normal tissue complication probability (NTCP) model of severe acute mucositis would be highly useful to guide clinical decision making and inform radiotherapy planning. We aimed to improve upon our previous model by using a novel oral mucosal surface organ at risk (OAR) in place of an oral cavity OAR.

MATERIALS AND METHODS

Predictive models of severe acute mucositis were generated using radiotherapy dose to the oral cavity OAR or mucosal surface OAR and clinical data. Penalised logistic regression and random forest classification (RFC) models were generated for both OARs and compared. Internal validation was carried out with 100-iteration stratified shuffle split cross-validation, using multiple metrics to assess different aspects of model performance. Associations between treatment covariates and severe mucositis were explored using RFC feature importance.

RESULTS

Penalised logistic regression and RFC models using the oral cavity OAR performed at least as well as the models using mucosal surface OAR. Associations between dose metrics and severe mucositis were similar between the mucosal surface and oral cavity models. The volumes of oral cavity or mucosal surface receiving intermediate and high doses were most strongly associated with severe mucositis.

CONCLUSIONS

The simpler oral cavity OAR should be preferred over the mucosal surface OAR for NTCP modelling of severe mucositis. We recommend minimising the volume of mucosa receiving intermediate and high doses, where possible.

摘要

目的

严重急性粘膜炎的正常组织并发症概率(NTCP)模型对于指导临床决策和放疗计划制定非常有用。我们旨在通过使用一种新型的口腔粘膜表面危及器官(OAR)替代口腔OAR来改进我们之前的模型。

材料与方法

利用口腔OAR或粘膜表面OAR的放疗剂量及临床数据建立严重急性粘膜炎的预测模型。针对两种OAR分别生成惩罚逻辑回归模型和随机森林分类(RFC)模型并进行比较。采用100次迭代分层随机分割交叉验证进行内部验证,使用多个指标评估模型性能的不同方面。利用RFC特征重要性探索治疗协变量与严重粘膜炎之间的关联。

结果

使用口腔OAR的惩罚逻辑回归模型和RFC模型的表现至少与使用粘膜表面OAR的模型一样好。粘膜表面模型和口腔模型中剂量指标与严重粘膜炎之间的关联相似。接受中等剂量和高剂量的口腔或粘膜表面体积与严重粘膜炎的相关性最强。

结论

在严重粘膜炎的NTCP建模中,应优先选择更简单的口腔OAR而非粘膜表面OAR。我们建议尽可能减少接受中等剂量和高剂量的粘膜体积。

相似文献

引用本文的文献

5
Confounding factors in the assessment of oral mucositis in head and neck cancer.头颈部癌症口腔黏膜炎评估中的混杂因素。
Support Care Cancer. 2022 Oct;30(10):8455-8463. doi: 10.1007/s00520-022-07128-w. Epub 2022 May 31.
6
Pathogenesis and Amelioration of Radiation-Induced Oral Mucositis.辐射诱导口腔黏膜炎的发病机制与缓解。
Curr Treat Options Oncol. 2022 Mar;23(3):311-324. doi: 10.1007/s11864-022-00959-z. Epub 2022 Mar 4.
8
National Protocol for Model-Based Selection for Proton Therapy in Head and Neck Cancer.头颈部癌质子治疗基于模型选择的国家协议。
Int J Part Ther. 2021 Jun 25;8(1):354-365. doi: 10.14338/IJPT-20-00089.1. eCollection 2021 Summer.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验