Suppr超能文献

用负载佐剂的颗粒对肿瘤细胞进行表面工程改造以用作癌症疫苗。

Surface engineering tumor cells with adjuvant-loaded particles for use as cancer vaccines.

作者信息

Ahmed Kawther K, Geary Sean M, Salem Aliasger K

机构信息

Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA, USA.

Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA, USA.

出版信息

J Control Release. 2017 Feb 28;248:1-9. doi: 10.1016/j.jconrel.2016.12.036. Epub 2017 Jan 3.

Abstract

Cell surface engineering is an expanding field and whilst extensive research has been performed decorating cell surfaces with biomolecules, the engineering of cell surfaces with particles has been a largely unexploited area. This study reports on the assembly of cell-particle hybrids where irradiated tumor cells were surface engineered with adjuvant-loaded, biodegradable, biocompatible, polymeric particles, with the aim of generating a construct capable of functioning as a therapeutic cancer vaccine. Successfully assembled cell-particle hybrids presented here comprised either melanoma cells or prostate cancer cells stably adorned with Toll-like receptor-9 ligand-loaded particles using streptavidin-biotin cross-linking. Both cell-particle assemblies were tested in vivo for their potential as therapeutic cancer vaccines yielding promising therapeutic results for the prostate cancer model. The ramifications of results obtained for both tumor models are openly discussed.

摘要

细胞表面工程是一个不断发展的领域,虽然已经进行了大量关于用生物分子修饰细胞表面的研究,但用颗粒对细胞表面进行工程改造在很大程度上仍是一个未被开发的领域。本研究报告了细胞-颗粒杂合体的组装,其中经辐照的肿瘤细胞通过负载佐剂、可生物降解、生物相容性的聚合物颗粒进行表面工程改造,目的是构建一种能够作为治疗性癌症疫苗发挥作用的结构。这里成功组装的细胞-颗粒杂合体包括黑色素瘤细胞或前列腺癌细胞,它们通过链霉亲和素-生物素交联稳定地装饰有负载Toll样受体-9配体的颗粒。两种细胞-颗粒组装体均在体内测试了其作为治疗性癌症疫苗的潜力,对前列腺癌模型产生了有前景的治疗结果。文中公开讨论了两种肿瘤模型所获结果的影响。

相似文献

1
Surface engineering tumor cells with adjuvant-loaded particles for use as cancer vaccines.
J Control Release. 2017 Feb 28;248:1-9. doi: 10.1016/j.jconrel.2016.12.036. Epub 2017 Jan 3.
2
Diaminosulfide based polymer microparticles as cancer vaccine delivery systems.
J Control Release. 2015 Dec 28;220(Pt B):682-90. doi: 10.1016/j.jconrel.2015.09.002. Epub 2015 Sep 8.
4
Biotinylated Streptavidin Surface Coating Improves the Efficacy of a PLGA Microparticle-Based Cancer Vaccine.
Bioconjug Chem. 2020 Sep 16;31(9):2147-2157. doi: 10.1021/acs.bioconjchem.0c00347. Epub 2020 Aug 31.
5
Development of a poly (lactic-co-glycolic acid) particle vaccine to protect against house dust mite induced allergy.
AAPS J. 2014 Sep;16(5):975-85. doi: 10.1208/s12248-014-9624-5. Epub 2014 Jul 1.
6
Immunopotentiator-Loaded Polymeric Microparticles as Robust Adjuvant to Improve Vaccine Efficacy.
Pharm Res. 2015 Sep;32(9):2837-50. doi: 10.1007/s11095-015-1666-6. Epub 2015 May 28.
7
PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses.
Int J Nanomedicine. 2012;7:1475-87. doi: 10.2147/IJN.S29506. Epub 2012 Mar 15.
8
A therapeutic microparticle-based tumor lysate vaccine reduces spontaneous metastases in murine breast cancer.
AAPS J. 2014 Nov;16(6):1194-203. doi: 10.1208/s12248-014-9662-z. Epub 2014 Sep 16.
9
Production of Adjuvant-Loaded Biodegradable Particles for Use in Cancer Vaccines.
Methods Mol Biol. 2017;1494:201-213. doi: 10.1007/978-1-4939-6445-1_14.
10
Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice.
J Control Release. 2012 Aug 20;162(1):159-66. doi: 10.1016/j.jconrel.2012.06.015. Epub 2012 Jun 15.

引用本文的文献

1
Freezing biological organisms for biomedical applications.
Smart Med. 2022 Dec 27;1(1):e20220034. doi: 10.1002/SMMD.20220034. eCollection 2022 Dec.
2
USE OF ARTIFICIAL CELLS AS DRUG CARRIERS.
Mater Chem Front. 2021 Sep 21;5(18):6672-6692. doi: 10.1039/d1qm00717c. Epub 2021 Jul 16.
3
Cell-Based Drug Delivery Systems with Innate Homing Capability as a Novel Nanocarrier Platform.
Int J Nanomedicine. 2023 Jan 29;18:509-525. doi: 10.2147/IJN.S394389. eCollection 2023.
4
Toll-like receptor-targeted anti-tumor therapies: Advances and challenges.
Front Immunol. 2022 Nov 21;13:1049340. doi: 10.3389/fimmu.2022.1049340. eCollection 2022.
5
Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison.
Bioact Mater. 2022 Oct 26;22:491-517. doi: 10.1016/j.bioactmat.2022.10.016. eCollection 2023 Apr.
6
Functionalized Peptide-Based Nanoparticles for Targeted Cancer Nanotherapeutics: A State-of-the-Art Review.
ACS Omega. 2022 Oct 5;7(41):36092-36107. doi: 10.1021/acsomega.2c03974. eCollection 2022 Oct 18.
8
The construction of a lymphoma cell-based, DC-targeted vaccine, and its application in lymphoma prevention and cure.
Bioact Mater. 2020 Sep 22;6(3):697-711. doi: 10.1016/j.bioactmat.2020.09.002. eCollection 2021 Mar.
9
Advances on Non-Genetic Cell Membrane Engineering for Biomedical Applications.
Polymers (Basel). 2019 Dec 5;11(12):2017. doi: 10.3390/polym11122017.

本文引用的文献

1
A novel method for imaging sites of paracellular passage of macromolecules in epithelial sheets.
J Control Release. 2016 May 10;229:70-79. doi: 10.1016/j.jconrel.2016.03.018. Epub 2016 Mar 16.
3
Exploiting the Immunogenic Potential of Cancer Cells for Improved Dendritic Cell Vaccines.
Front Immunol. 2016 Jan 14;6:663. doi: 10.3389/fimmu.2015.00663. eCollection 2015.
4
Hypoxia-specific, VEGF-expressing neural stem cell therapy for safe and effective treatment of neuropathic pain.
J Control Release. 2016 Mar 28;226:21-34. doi: 10.1016/j.jconrel.2016.01.047. Epub 2016 Jan 28.
5
Enhanced in vivo antitumor efficacy of dual-functional peptide-modified docetaxel nanoparticles through tumor targeting and Hsp90 inhibition.
J Control Release. 2016 Jan 10;221:26-36. doi: 10.1016/j.jconrel.2015.11.029. Epub 2015 Nov 28.
7
Improving cell-based therapies by nanomodification.
J Control Release. 2015 Dec 10;219:560-575. doi: 10.1016/j.jconrel.2015.09.054. Epub 2015 Sep 28.
8
Diaminosulfide based polymer microparticles as cancer vaccine delivery systems.
J Control Release. 2015 Dec 28;220(Pt B):682-90. doi: 10.1016/j.jconrel.2015.09.002. Epub 2015 Sep 8.
9
Treating Patients with Metastatic Castration Resistant Prostate Cancer: A Comprehensive Review of Available Therapies.
J Urol. 2015 Dec;194(6):1537-47. doi: 10.1016/j.juro.2015.06.106. Epub 2015 Jul 18.
10
DNA vaccination for prostate cancer: key concepts and considerations.
Cancer Nanotechnol. 2015;6(1):2. doi: 10.1186/s12645-015-0010-5. Epub 2015 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验